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A regional estimate of postfire streamflow change in California
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Abstract The effect of fire on annual streamflow has been examined in numerous watershed studies,
with some studies observing postfire increases in streamflow while other have observed no conclusive
change. Despite this inherent variability in streamflow response, the management of water resources for
flood protection, water supply, water quality, and the environment necessitates an understanding of post-
fire effects on streamflow at regional scales. In this study, the regional effect of wildfire on annual stream-
flow was investigated using 12 paired watersheds in central and southern California. A mixed model was
used to pool and statistically examine the combined paired-watershed data, with emphasis on the effects
of percentage area burned, postfire recovery of vegetation, and postfire wetness conditions on postfire
streamflow change. At a regional scale, postfire annual streamflow increased 134% (82%–200%) during the
first postfire year assuming 100% area burned and average annual wetness conditions. Postfire response
decreased with lower percentages of percentage area burned and during subsequent years as vegetation
recovered following fire. Annual streamflow response to fire was found to be sensitive to annual wetness
conditions, with postfire response being smallest during dry years, greatest during wet years, and slowly
decreasing during very wet years. These findings provide watershed managers with a first-order estimate
for predicting postfire streamflow response in both gauged and ungauged watersheds.

1. Introduction

In Mediterranean-Climate Regions (MCRs) such as California, fire is an episodic form of land-cover change
whose frequency and severity has increased over the past century due to the influence of humans [Keeley
and Fotheringham, 2003] and may increase further with climate change [Williams et al., 2001; Lenihan et al.,
2003; Westerling and Bryant, 2008]. Fire removes above ground vegetation cover and frequently produces
hydrophobic soils; initiating a complex recovery sequence where hydrophobicity breaks down with succes-
sive rainfall events and burned shrubland stands become reestablished after crowding out opportunistic
herbaceous vegetation [Keeley and Keeley, 1981; Shakesby and Doerr, 2006].

Fire has been observed to impact many aspects of the streamflow regime, including peak flow, base flow,
and water yield [Keller et al., 1997; McMichael and Hope, 2007; Kinoshita and Hogue, 2011]. While there is a
basic understanding of the individual hydrologic processes affected by fire (e.g., interception, soil infiltra-
tion, and transpiration), predicting how streamflow may respond to fire for a given watershed remains chal-
lenging since the effect of these processes on streamflow varies spatially from watershed to watershed and
temporally as watershed conditions undergo a postfire recovery sequence. Spatial and temporal variability
stems from the uniqueness of watershed physiographic properties, meteorological conditions, and vegeta-
tion types; the extent, location, and severity of the fire; and the postfire recovery rate of vegetation and
soils. Consequently, postfire streamflow responses are largely representative of the specific watershed and
conditions that produced the response.

Streamflow response to fire in MCR watersheds varies widely across watersheds, with many empirical
studies observing postfire increases in streamflow [Hoyt and Troxell, 1932; Lavabre et al., 1993; Scott,
1993; Lo�aiciga et al., 2001; Jung et al., 2009], while others have observed no conclusive change in
streamflow [Britton, 1991; Aronica et al., 2002; Bart and Hope, 2010] or streamflow decreases [Nolan
et al., 2015]. Despite this inherent variability in streamflow response, the management of water resour-
ces for flood protection, water supply, water quality, and the environment necessitates an understand-
ing of postfire effects on streamflow at a regional scale. This knowledge is essential for prediction in
both gauged and ungauged watersheds.
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Despite numerous investigations into the effect of fire on annual streamflow at the watershed scale, a
regional estimate of postfire streamflow response for central and southern California has not been estab-
lished. Some reviews on the general effects of vegetation change on streamflow have included, but do not
exclusively pertain to fire [Bosch and Hewlett, 1982; Brown et al., 2005]. On the other hand, recent reviews by
Moody and Martin [2009] and Smith et al. [2011] have investigated the effects of fire on sediment and water
quality, respectively, but no known studies have examined the regional effect on postfire annual
streamflow.

The research objective of this study was to combine streamflow data from 12 paired-watershed studies in
California in order to investigate the regional effect of fire on annual streamflow. The paired-watershed
technique entailed pairing streamflow from each burned watershed with streamflow from an unburned
watershed to act as a control. A mixed model was then used to pool and statistically examine the combined
data. Pooling data from multiple watersheds, as opposed to examining a single watershed as is typically
done in paired-watershed analyses, enabled this study to examine the effect of percentage area burned,
the postfire recovery of vegetation, and postfire wetness conditions on streamflow following fire.

Some of the watersheds included in this study have previously been analyzed on an individual basis to test
for the effect of fire on streamflow [Hoyt and Troxell, 1932; Bart and Hope, 2010; Kinoshita and Hogue, 2011].
Hoyt and Troxell [1932] conducted one of the earliest paired-watershed studies using data from Fish Creek
following a fire in 1924. This study reported a 29% increase in postfire water yield and an increase in both
peak flow rates and base flow levels. Kinoshita and Hogue [2011] conducted a study of City Creek and Devil
Canyon Creek following a large fire in 2003 and noted that both water yield and dry season base flow
increased throughout the postfire period. Bart and Hope [2010] investigated the effect of fire on postfire
streamflow in six large (>50 km2) central California watersheds using the paired-watershed technique. Few
instances of statistically significant postfire streamflow change were reported by these authors, with most
postfire streamflow falling within the uncertainty of the prefire calibrated model. However, Bart and Hope
[2010] did note that the few instances of statistically significant postfire streamflow change were associated
with years of normal or above-normal annual streamflow. A similar relation between postfire streamflow
change and annual wetness conditions has also been observed by Feikema et al. [2013] for Australian
watersheds.

2. Watershed Selection and Data

The watersheds in this study were selected from U.S. Geological Survey (USGS) streamflow gauges in central
and southern California. Watersheds were evaluated for inclusion based on the absence of major diversions
or regulations, lack of persistent winter snow cover, little urbanization or agriculture, and data record. Fire
history for each watershed was obtained from the Fire and Resource Assessment Program (FRAP) (http://
frap.fire.ca.gov). Paired watersheds were selected by first identifying watersheds that had a fire that burned
at least 20% of the watershed area and had no additional fires greater than 5% of the watershed area dur-
ing the prefire and postfire periods. All watersheds in the vicinity of the candidate burned watersheds were
then evaluated for also having no fires greater than 5% of the watershed area during the combined prefire
and postfire period to act as a control watershed.

A total of 12 burned watersheds and 8 control watersheds were identified for inclusion in the study
(Table 1). All burned watersheds met the selection criteria outlined above except San Antonio, Santa Paula,
and City which had fires during the prefire period of 7%, 16%, and 6% of area burned, respectively. The
study watersheds are located along the Coast Range of central California and the Transverse Range of
southern California (Figure 1). The area encompassing these watersheds is characterized by a Mediterranean
climate regime, with hot dry summer and mild wet winters. Most rainfall is generated by cyclonic frontal
systems approaching from the Pacific Ocean. Since the mountains of the Coast and Transverse Ranges are
topographically very steep, orographic effects drive precipitation totals during the wet season.

Watershed characteristics were obtained from the Geospatial Attributes of Gages for Evaluating Streamflow
(GAGES-II) database assembled by Falcone [2011] (Table 1). The burned watersheds had areas ranging from
7 km2 to over 600 km2, with the smaller watersheds concentrated in the southern portion of the region.
Annual precipitation totals varied from 385 to 1163 mm/yr, while mean annual streamflow ranged from 22
to 753 mm/yr. The lithology of the watersheds in the Transverse Range is dominated by igneous and
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metamorphic rocks while the watersheds in the Coast Range are primarily composed of sedimentary rocks.
Soils are relatively shallow (456–947mm), particularly in the steeper watersheds. Chaparral shrublands are
the dominant vegetation in many of the watersheds, although grasslands, coastal sage scrub, oak wood-
lands, and forests are also common [Callaway and Davis, 1993].

Each burned watershed and its corresponding control watershed is listed in Table 2. The percentage of
watershed area burned ranged from 23% to 100% across all the watersheds, with higher percentages more
commonly observed in smaller watersheds. Some of the control watersheds were located nearly 100 km

Table 1. Watershed Characteristics

# Watershed Name
USGS

ID
Area
(km2)

Mean Annual
Precipitation

(mm)

Mean
Annual

PET (mm)

Mean Annual
Streamflow

(mm)

Dominant
Geology

Type

Stream
Density

(km/Km2)

Mean
Slope

(%)

Mean
Soil

Depth
(mm)

Mean Clay
Percentage

Mean Silt
Percentage

Shrubland
Percentage

1 City Creek 11055801 50.5 781 729 226 Quarternary 1.21 34.4 650 13.2 30.6 77.5
2 Devil Canyon Creek 11063680 14.4 940 762 165 Quarternary 1.45 39.0 492 14.5 32.1 76.7
3 Day Creek 11067000 12.0 1155 648 309 Gneiss 0.92 50.9 518 14.1 32.1 48.3
4 Fish Creek 11084500 15.4 841 772 271 Gneiss 1.26 39.2 493 16.5 45.7 70.8
5 Little Dalton Creek 11086500 7.2 734 804 92 Gneiss 0.77 35.9 456 18.2 49.7 87.1
6 Arroyo Seco (South) 11098000 41.6 788 776 215 Granitic 1.13 42.8 461 17.7 48.2 70.9
7 Santa Anita Creek 11100000 25.0 969 762 239 Granitic 1.01 44.1 475 17.3 47.6 46.6
8 Sespe Creek 11111500 128.5 850 552 120 Sedimentary 1.25 26.5 573 22.1 41.3 45.9
9 Santa Paula Creek 11113500 103.3 678 709 220 Sedimentary 1.18 34.4 621 23.6 44.2 55.6
10 Coyote Creek 11117600 33.9 729 736 216 Sedimentary 1.10 31.2 603 25.9 44.7 46.8
11 Carpinteria Creek 11119500 34.1 710 725 107 Sedimentary 1.06 32.6 643 23.8 44.7 36.3
12 Santa Cruz Creek 11124500 191.5 831 637 96 Sedimentary 1.17 33.5 646 23.9 41.1 47.3
13 Lopez Creek 11141280 54.0 717 741 170 Sedimentary 0.69 37.1 658 32.6 38.8 27.8
14 Arroyo De La Cruz 11142500 106.8 906 716 460 Sedimentary 0.92 28.1 714 34.3 40.4 26.3
15 Big Sur River 11143000 120.6 1163 640 753 Granitic 0.98 43.6 633 14.1 31.5 33.1
16 Nacimiento River 11148900 403.5 692 745 409 Sedimentary 0.99 21.3 720 22.9 36.9 40.8
17 San Antonio River 11149900 556.4 633 737 174 Sedimentary 1.13 19.5 862 24.4 37.8 39.1
18 Arroyo Seco (North) 11152000 625.1 809 664 243 Sedimentary 1.03 34.7 644 20.2 34.8 42.2
19 Los Gatos Creek 11224500 247.4 470 792 22 Sedimentary 1.19 26.1 857 35.6 40.3 67.7
20 Cantua Creek 11253310 120.4 385 823 25 Sedimentary 1.24 24.3 947 36.6 36.7 42.5

Figure 1. Location of selected research watersheds in California. Number corresponds to name and description in Table 1.
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from the burned watershed. While differences in precipitation and watershed characteristics between the
burned and control watersheds may be expected to increase with distance between watershed pairs, Bart and
Hope [2010] observed that the correlation of annual streamflow for paired watersheds at this distance was suit-
able for postfire streamflow change analysis in California. For this study, 10 out of the 12 watershed pairs had
R2 values greater than 0.85 for prefire annual streamflow (loge) between the control and burned watersheds,
with the lowest being 0.69 for Devil Canyon and its control Arroyo Seco (Table 2). The average length of the
prefire period was 16.6 years, ranging from 7 to 26 years. The postfire period was monitored for up to 7 years.

3. Methodology

3.1. Mixed Model
Annual streamflow data from 12 paired-watershed experiments were pooled into a single data set to statis-
tically evaluate regional changes in postfire streamflow. The relation between annual streamflow for each
burned and control watershed differed by watershed pair. This was due to the data set containing a hier-
archical structure, with streamflow values for the lower, streamflow level of the hierarchy being dependent
on the higher, group or watershed level of the hierarchy from which the streamflow values were selected.
The lower level of this hierarchy is referred to as level 1 and hereby denoted with an i subscript, while the
higher level is referred to as level 2 and denoted with a j subscript. Mixed modeling is a statistical approach
that is similar to regression analysis but can account for hierarchies within data by partitioning model error
to each level of the hierarchy using variables containing random effects [Bickel, 2007]. Mixed modeling is
referred to by many different names in the literature; multilevel modeling, hierarchical modeling, general-
ized linear mixed modeling (GLMM), mixed-effect modeling, and meta-analysis; and has recently been used
for an increasing number of hydrologic applications [Clarke, 2001; Lopez-Moreno and St€ahli, 2008; Seo et al.,
2008; Wehrly et al., 2009; Webb and Kathuria, 2012; Chamizo et al., 2013; Lessels and Bishop, 2013; Walsh and
Webb, 2014].

A two-level mixed model with no predictor variables (i.e., unconditional model) may be represented as

yij5b01uj1eij (1)

where yij is the ith observation of the dependent variable (i.e., annual streamflow) from the jth group (i.e.,
watershed), b0 is the intercept of the model, uj is the level-2 model error for the jth group, and eij is the
level-1 model (residual) error for the ith observation from the jth group. It is generally assumed that the dis-
tribution of the model errors is normal with a mean of 0 and a variance of r2, such that uj � N 0;r2

u

� �
and

eij � N 0; r2
e

� �
. Model error uj represents the deviation of the level-2 groups from the overall mean, and

model error eij represents the deviation of level-1 data from the corresponding level-2 group mean.

The unconditional model in equation (1) provides a baseline estimate of the variance in the dependent vari-
able. Predictor variables may be introduced to the model in order to reduce this variance. A conditional
mixed model with a level-1 predictor variable may be represented by

Table 2. Summary of Paired Watershed and Fire Characteristicsa

Burnt Watershed Fire Year Area Burned (%) Control Watershed
Distance

Between Pairs (km) Prefire Period Postfire Period R2

Arroyo Seco (N) 1977 63 San Antonio 29 1966–1977 1978–1984 0.98
Big Sur 1977 92 Arroyo de la Cruz 72 1966–1977 1978–1979 0.93
Cantua 1979 23 Los Gatos 14 1967–1979 1980–1986 0.89
Carpinteria 1971 84 Coyote 8 1959–1971 1972–1977 0.96
City 2003 94 Arroyo Seco (S) 89 1985–2003 2004–2010 0.85
Devil Canyon 2003 97 Arroyo Seco (S) 75 1985–2003 2004–2010 0.69
Fish 1924 100 Santa Anita 9 1918–1924 1925–1931 0.96
Little Dalton 1960 100 Day 27 1940–1960 1961–1967 0.92
Lopez 1985 100 Santa Cruz 97 1968–1985 1986–1992 0.89
San Antonio 1985 31 Nacimiento 14 1972–1985 1986–1992 0.95
Santa Paula 1985 71 Santa Cruz 68 1960–1985 1986–1992 0.90
Sespe 1985 40 Santa Cruz 41 1960–1985 1986–1992 0.79

aR2 corresponds to the relation between prefire annual streamflow (loge) in the burned and control watersheds.
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yij5b01b1xij1uj1eij (2)

where xij is the ith observation of the level-1 predictor variable for the jth group and b1 is the model slope.

The model represented by equation (2) is often referred to as a random intercept model because the intercept
for each level-2 group varies randomly across groups. The random intercept model assumes that the slope of
the relation between a predictor variable and the dependent variable is constant across groups. This assump-
tion may not always be appropriate. Random slope models are mixed models where the both the intercept
and the slope are allowed to vary across watersheds. A random slope model for equation (2) can be written as

yij5b01b1xij1u0j1u1j xij1eij: (3)

The level-2 random effects are now represented by two terms, u0j for the random intercept and u1j for the
random slope. Note that u1j interacts with xij , indicating the slope of the relation between the dependent
variable and the predictor variable may vary by group. A second variable is also generated from the random
slope model, ru01, representing the covariance between u0j and u1j .

3.2. Model Calibration and Cross Validation
The standard approach for calibrating mixed models is the maximum likelihood method [Hox, 2002], which
attempts to maximize a likelihood function for optimal model fit. The maximum likelihood method is based
on large-sample theory and maximum likelihood estimates and confidence intervals are considered to be
very robust when level-2 sample sizes are large [Hox, 2002]. However, the method has been shown to be
severely biased when the level-2 sample sizes are small [Stegmueller, 2013]. For small samples, it is recom-
mended that Bayesian estimation procedures be used instead of maximum likelihood [Hox, 2002; Stegmuel-
ler, 2013]. With Bayesian approaches, a prior probability distribution is developed and combined with an
estimate of the likelihood of the data to produce a posterior probability distribution, which represents the
uncertainty of the model. Although the posterior distribution is generally too complicated to compute
directly, Markov Chain Monte Carlo (MCMC) procedures have been developed to generate random samples
from the posterior distribution. These samples, when repeated many times, can provide estimates and con-
fidence intervals for mixed model parameters.

As the level-2 sample size for watersheds in this study was 12, a Bayesian estimation procedure was used to
calibrate the model. Mixed modeling methods were carried out with the R programming language (www.r-
project.org) using the MCMCglmm [Hadfield, 2010] package. An improper, noninformative prior was used to
minimize the effect of the prior on the model results, while the likelihood was assumed to have a Gaussian
distribution. A Gibbs sampling algorithm was used for the MCMC walk [Hadfield, 2010] and 1,000,000 itera-
tions with a thinning of 20 were used to calibrate each model. Model convergence was assessed visually.

The test statistic used for model calibration was the Deviance Information Criterion (DIC) [Hadfield, 2010].
The DIC is a generalization of the Akaike information criterion and is defined as

DIC5�D1pD (4)

where �D is a measure of model fit and pD is a measure of model complexity. �D is the average deviance D
over all MCMC iterations, with deviance defined as

D522ln p yjhð Þð Þ (5)

p yjhð Þ is the likelihood function and h is a parameter of the model. The variable pD is a measure of the effec-
tive number of parameters [Spiegelhalter et al., 2002]. Models with smaller values of DIC indicate better cali-
brated model fit, however, in some cases, DIC has been found to overfit models [Plummer, 2008].

The DIC provides an estimate of the model fit for the dependent variable; annual streamflow in the burned
watershed. However, the objective of this study was to investigate the regional effect of fire, an independ-
ent variable (see section 4.3), on annual streamflow. To accomplish this latter objective, and to ensure that
the model was not overly complex for the available data, leave-one-out cross validation was used to evalu-
ate how well each model predicted annual streamflow response to fire [Kohavi, 1995].

The leave-one-out cross-validation technique systematically holds one watershed out of model calibration
for use during validation. The model was calibrated on the remaining 11 watersheds and used to predict
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the effect of fire for the validation water-
shed. This process was repeated for each
watershed and mean square error (MSE)
was computed to compare the modeled
postfire streamflow change with the
observed postfire streamflow change in the
validation watersheds. MSE is defined as

MSE5
1
N

Xp

i51

Xqi

j51

yij2ŷ ij

� �2
(6)

where ŷ ij is the difference between the jth
mixed-model predicted postfire stream-
flow value in the ith watershed assuming
fire and the jth mixed-model predicted

postfire streamflow value in the ith watershed assuming no fire; yij is the difference between the jth observed
postfire streamflow value in the ith watershed and the jth postfire streamflow value in the ith watershed pre-
dicted from a prefire linear regression model; p is the total number of watersheds; qi is the number of postfire
years in the ith watershed; and N is equal to the total number of postfire wateryears for all the watersheds.

3.3. Model Development and Model Variables
To test the regional effect of fire on annual streamflow in central and southern California, a mixed model was
developed to predict annual streamflow (mm) from the burned watershed. Annual streamflow was observed
to be independent from one wateryear (October–September) to the next (lag-1 correlation coefficient (r) for
annual streamflow in each of 12 burned watersheds ranged from 20.34 to 0.27) since the extended summer
dry period in California produces very low soil moisture and storage levels that coincide with end of the water-
year [Miller et al., 1983]. Model development began with a parsimonious base model and proceeded by incre-
mentally adding more complexity to the model (Table 3). The base model included random intercepts for
watershed, but no predictor variables (Model 1). Following the addition of each model variable, the value of
the DIC calibration statistic and MSE validation statistic (the latter for models including a fire variable) was
evaluated to determine if the new variable improved model fit.

Annual streamflow from the control watersheds was expected to be the strongest predictor of annual
streamflow from the burned watersheds by controlling for interannual differences in precipitation and
hydrologic behavior (Model 2). Since the relation between annual streamflow from the burned and control
watersheds was heteroscedastic and nonnormal, streamflow data from both watersheds were transformed
(loge) for all models in the study, including Model 1. In some cases, the log transformation of very small
annual streamflow totals (less than 1 mm) produced disproportionately influential points due to the amplifi-
cation of very small differences in annual streamflow. Influential points with a Cook’s distance greater than
one [Ryan, 1997] were removed following the approach outlined in Bart and Hope [2010]. Annual stream-
flow from the control watersheds was group-mean centered by subtracting the mean of the level-2 group
to which each value was associated [Enders and Tofighi, 2007].

Model 3 tested whether the addition of by-watershed random slopes for annual streamflow from the con-
trol watershed provide a better model fit than the random intercepts of Model 2 (Table 3).

Model 4 incorporated a fire variable for characterizing postfire watershed conditions. As the postfire recov-
ery of watershed conditions is highly variable, there is no established approach for defining postfire water-
shed conditions in California. Some studies have treated the postfire period as having uniformly burned
conditions for a fixed period of time (i.e., dummy variable) [Lo�aiciga et al., 2001; Bart and Hope, 2010]. How-
ever, an alternative approach is to include a fire variable that approximates the postfire recovery of water-
shed conditions. This latter approach is likely to provide a more realistic representation of postfire
watershed conditions. Further, since the effect of fire lessens with time, the subjective designation of post-
fire length becomes less critical than under uniform conditions.

Four fire variables representing different metrics of postfire change and postfire watershed recovery were
tested and compared in this study to determine which variable most accurately characterized postfire

Table 3. Model Structures Tested for Predicting Annual Streamflow in the
Burned Watershed

Model Model Components

1 By-watershed random intercepts
2 Model 1 1 Annual streamflow from the control

watershed
3 Model 2 1 By-watershed random slopes for annual

streamflow from the control watershed
4a Model 3 1 Fire (Uniform)
4b Model 3 1 Fire (Percentage area burned)
4c Model 3 1 Fire (Postfire recovery)
4d Model 3 1 Fire (Percentage area burned

and postfire recovery)
5 Model 4top 1 Interaction variable (Fire 3 Annual

streamflow from the control watershed)
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watershed conditions. For each of the fire variables, watershed conditions during the prefire period were
assumed to be uniform, or unvarying. For the postfire period, the first variable assumed that the initial
postfire change was equal for all watersheds and that postfire conditions were uniform throughout a 7
year period following fire (Model 4a). The second fire variable tested accounted for watershed-to-
watershed differences in the initial postfire change by weighting the postfire period by the percentage of
watershed area burned (Model 4b). While the percentage of area burned does not account for the sever-
ity of the fire or spatial differences from burning in hydrologically connected verses unconnected areas, it
does provides an estimate of the differences in initial postfire watershed conditions between watersheds.
The third variable tested assumed that the initial postfire change was equal for all watersheds but
accounted for the temporal recovery of watershed conditions following fire by weighting the postfire
period by the reverse scaling (i.e., 1 minus value) of a normalized postfire vegetation recovery curve (see
next paragraph) (Model 4c). The postfire period of the fourth fire variable tested was weighted by
both the percentage of watershed area burned and the normalized postfire vegetation recovery curve
(Model 4d).

The normalized postfire vegetation recovery curve is a single curve used to characterize the postfire recov-
ery for all watersheds in the study and was derived from two remote sensing studies in central California
[McMichael et al., 2004; Hope et al., 2007] (Figure 2). This curve was required since some of the fires in the
study date from the presatellite era and characterizing the recovery of each burned watershed was not pos-
sible. McMichael et al. [2004] used a chronosequence technique to develop a postfire recovery curve for
shrubland leaf-area index (LAI) while Hope et al. [2007] used a NDVI time series to directly produce a recov-
ery curve for shrubland stands. These studies observed that postfire recovery of above ground vegetation
ranged from 10 to 15 years following fire. The normalized postfire vegetation recovery curve did not incor-
porate the postfire recovery of soils since no large-scale estimate of soil recovery was available. As soils may
be expected to recover faster than vegetation [Shakesby and Doerr, 2006], this omission may cause the
model to underestimate postfire streamflow response during years when streamflow is affected by postfire
changes in soil hydrophobicity and overestimate postfire streamflow response when streamflow is unaf-
fected. It should also be noted that since the normalized postfire vegetation recovery curve only takes into
account shrubland recovery, differences in the postfire recovery of other vegetation types within the water-
shed might add uncertainty to the model results.

Model 5 examined how postfire streamflow response varies with interannual (level 1) changes in watershed
conditions. Model 5 added a level-1 interaction variable to the top-performing Model 4 (herein referred to
as Model 4top) in order to investigate how the effect of fire varies from wateryear to wateryear with changes
in annual wetness conditions (Table 3). The interaction variable was generated from the product of the two
interacting variables; the fire variable introduced in Model 4top and annual streamflow from the control
watershed. The magnitude of annual streamflow from the control watershed was assumed to be represen-
tative of annual wetness conditions.

Figure 2. Normalized postfire vegetation recovery curve.
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4. Results

Plots of prefire and postfire annual streamflow totals for each of the burned and control watersheds are dis-
played in Figure 3. A linear least squares regression model (solid line) with corresponding prediction inter-
vals (dashed lines) was fitted to the prefire streamflow of each watershed pair. Linear regression represents

Figure 3. Annual streamflow from the burned watershed (y axis) plotted against annual streamflow from the control watershed (x axis). Solid black line represents linear regression
model fitted to prefire annual streamflow. Dashed black lines represent prediction intervals for prefire relation.
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the standard approach for modeling individual paired-watershed relations. For many of the burned water-
sheds (e.g., Big Sur, Cantua, San Antonio, Santa Paula, and Sespe), the deviations of the postfire annual
streamflow data about the regression line did not exceed the variability of the prefire data, indicating that
postfire change may not be detectable for some paired watersheds on an individual basis [Bart and Hope,
2010]. However, examining the results across all 12 watershed pairs, 74.7% of postfire annual streamflow

Figure 3. (continued)
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points plotted above the prefire linear regression lines. This implies
that at a regional scale, postfire annual streamflow may have
increased in the burned watersheds relative to the control
watersheds.

Table 4 presents the calibration and validation statistics generated
during the development of each mixed model. The mode and 95%
credible (i.e., confidence) intervals for each fixed and random model
parameter are displayed in Tables 5 and 6, respectively.

The base model consisting of a random intercept model grouped by
watershed with no predictor variables is shown as Model 1. The addi-
tion of annual streamflow from the control watersheds as a predictor
variable (Model 2) and the inclusion of random slopes between annual
streamflow from the burned and control watersheds (Model 3)

improved calibration fit relative to Model 1, with DIC decreasing from 873.6 to 372.1 (Table 4). For the base
model, the only fixed effect calculated was the intercept, which represents the population mean for logged
annual streamflow from the burned watersheds, adjusted for the hierarchical structure of the data. For Mod-
els 2 and 3, annual streamflow from the control watershed was a highly significant predictor of annual
streamflow in the burned watershed (Table 5), reflecting the strong relation (R2) observed between the two
variables (Table 2).

Four different fire predictor variables, uniform conditions (Model 4a), percentage area burned (Model 4b),
postfire recovery (Model 4c), and both percentage area burned and postfire recovery (Model 4d), were
added individually to Model 3 to test the effect of fire on annual streamflow. Model 4a showed a decrease
in DIC to 348.2, a cross-validation MSE value of 1.43, and had a fire coefficient value of 0.31. The antilog of
this coefficient value equates to a 36% (20%–53%) increase in annual streamflow for each postfire year and
for all fire sizes. Model 4b showed a slightly improved fit (DIC 5 344.2, MSE 5 1.37) and an increase in post-
fire annual streamflow of 52% (30%–76%) assuming 100% area burned. For watersheds that are only par-
tially burned, the corresponding postfire streamflow response would be smaller. Model 4c further improved
fit with a reduction in DIC to 335.3 and MSE to 1.25. The improved fit of Model 4c relative to Model 4b sug-
gests that accounting for the postfire recovery of watershed conditions is more important than accounting
for watershed differences in the percentage of area burned. Postfire annual streamflow in Model 4c
increased 86% (54%–132%) during the first postfire wateryear. Model 4d, which accounted for both per-
centage area burned and the postfire recovery of watershed conditions, provided the best fit (DIC 5 328.6,
MSE 5 1.17) was selected as Model 4top. Model 4d predicted that the regional effect of fire during the first
postfire wateryear for a watershed that is 100% burned would be a 136% (84%–208%) increase in annual
streamflow.

For a given percentage of area burned and for a given postfire year, the effect of fire on annual streamflow
was assumed to be equal under all conditions for Models 4d. A level-1 interaction variable between the fire
variable from Model 4d and antecedent streamflow from the control watershed was included in Model 5 to
test whether the effect of fire on annual streamflow varies with annual wetness conditions. Model fit
improved with Model 5; DIC decreased to 323.4 and MSE decreased to 1.00 (Table 4). The fire variable in
Model 5 predicted that postfire annual streamflow would increase 134% (82%–200%) during the first post-
fire year assuming 100% area burned (Table 5). This value represented the effect of fire on annual stream-
flow for average annual wetness conditions for the region, specifically when annual streamflow from the
control watershed was at its centered mean value of 76 mm. The interaction variable modified this effect
when annual streamflow from the control watershed was above or below the centered value. On a percent
change basis, postfire annual streamflow decreased by 19% (3%–32%) for every doubling of annual stream-
flow from the control watershed (i.e., wetness conditions). Figure 4 shows the predicted change in postfire
annual streamflow, along with the associated standard errors. When the percentage change in annual
streamflow was transformed into a volumetric (mm) change, only small increases in postfire annual stream-
flow were observed during dry years. Postfire annual streamflow response increased with annual wetness
conditions until reaching a maximum of 168 mm when annual streamflow from the control watershed was
446 mm, or approximately 6 times mean wetness conditions (Figure 4). When annual streamflow from the
control watershed exceeded this threshold, postfire streamflow response began to decrease again.

Table 4. Calibration and Validation
Statistics for Each of the Tested Modelsa

Model
Calibration Validation

DIC MSE

1 873.6
2 455.5
3 372.1
4a 348.2 1.43
4b 344.2 1.37
4c 335.3 1.25
4d 328.6 1.17
5 323.4 1.00

aDIC is Deviance Information
Criterion and MSE is mean squared error.

Water Resources Research 10.1002/2014WR016553

BART A REGIONAL ESTIMATE OF POSTFIRE STREAMFLOW CHANGE 1474



5. Discussion

The results of this study provide strong evidence that despite the variability observed in postfire response at a
watershed scale, postfire annual streamflow increases relative to prefire annual streamflow at a regional scale.
All four of the fire variables tested in Models 4a–4d had 95% credible intervals that did not overlap with zero
(Table 5). The fire variable in Model 4a showed the smallest postfire increase 36% (20%–53%) due to the postfire
response being distributed equally over all watersheds and the entire 7 year postfire period. The fire variable in
Model 4d, on the other hand, showed a much sharper postfire increase in annual streamflow 136% (84%–
208%) since the increase was only applicable to the first postfire year in watersheds that were 100% burned.

The best model in the study (Model 5) included a fire variable that incorporated both the postfire recovery
of vegetation and the percentage of watershed burned. For the former component, the effect of fire on
streamflow was best represented by the normalized postfire vegetation recovery curve, which was better
able to capture postfire streamflow response in these watersheds than a dummy variable approach. The
effect of fire was most pronounced during the first postfire year when reductions in vegetation were great-
est, then decreased over a 7 year period as vegetation communities became reestablished. These results
suggest that at a regional scale, postfire reductions in shrubland and other vegetation types present in the
watersheds have a larger effect on postfire ET than corresponding increases in herbaceous vegetation.

Percentage of watershed area burned was shown to be an important control on postfire streamflow change
at the regional level. For average annual wetness conditions, postfire annual streamflow increased 134%, or
102 mm, during the first postfire year assuming 100% area burned (Model 5). This regional increase is simi-
lar to the results obtained by Bosch and Hewlett [1982] who found that annual streamflow increased
�10 mm for every 10% decrease in scrub cover. The similarity of results between the two studies suggests
that annual streamflow response to land-cover change at regional scales may not be as variable as response
at watershed scales.

Annual streamflow response to fire was lowest during dry years, greatest during wet years, and then slowly
decreased for extremely wet years (Figure 4). A possible physical explanation for these results relates to the
interaction between soil drainage and rooting depth [Wilcox et al., 2006]. During dry years, the storage
capacity within the shallow rooting zone of the herbaceous vegetation that dominate early postfire succes-
sion may be sufficient to transpire all available soil water, minimizing the transpirational differences

Table 5. Fixed Effect Estimates (Mode) and 95% Credible Intervals for All Modelsa

Model Intercept Control Q Fire (Uniform)
Fire (Percentage

Area Burned)
Fire (Postfire

Recovery)

Fire (Percentage
Area Burned and

Postfire Recovery)

Control Q 3 Fire
(Percentage Area

Burned and Postfire
Recovery)

1 4.54 (3.87/5.07)
2 4.31 (3.73/5.01) 0.81 (0.76/0.86)
3 4.35 (3.66/5.02) 0.84 (0.67/1.01)
4a 4.37 (3.61/4.98) 0.84 (0.66/1.02) 0.31 (0.18/0.43)
4b 4.36 (3.61/4.93) 0.82 (0.66/1.02) 0.42 (0.26/0.57)
4c 4.33 (3.60/4.97) 0.83 (0.66/1.02) 0.62 (0.43/0.84)
4d 4.33 (3.64/4.97) 0.84 (0.66/1.02) 0.86 (0.61/1.13)
5 4.39 (3.75/5.05) 0.85 (0.68/1.05) 0.85 (0.60/1.10) 20.27 (20.46/20.05)

aThe variable for Control Q was logged and centered at 4.33.

Table 6. Random Effect Estimates (Mode) and 95% Credible Intervals for All Models

Model
Level-2 Variance

(Intercept)
Level-2 Variance

(Slope)
Level-2 Covariance

(Intercept and Slope)
Level-1 Variance

(Residual)

1 0.66 (0.28/2.12) 1.44 (1.20/1.70)
2 0.90 (0.37/2.39) 0.29 (0.25/0.36)
3 0.97 (0.38/2.85) 0.05 (0.02/0.18) 20.14 (20.56/0.006) 0.22 (0.18/0.25)
4a 0.96 (0.41/2.94) 0.07 (0.02/0.19) 20.17 (20.57/0.009) 0.20 (0.16/0.23)
4b 0.94 (0.40/2.85) 0.06 (0.02/0.19) 20.14 (20.57/0.004) 0.19 (0.16/0.23)
4c 0.89 (0.39/2.90) 0.06 (0.02/0.19) 20.15 (20.58/0.001) 0.18 (0.15/0.22)
4d 0.87 (0.38/2.81) 0.06 (0.02/0.20) 20.15 (20.58/0.003) 0.18 (0.15/0.22)
5 0.89 (0.39/2.87) 0.06 (0.02/0.20) 20.14 (20.56/0.011) 0.17 (0.15/0.21)
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between postfire herbaceous vegetation and prefire chaparral and trees. During years with higher levels of
wetness, the effect of differences in prefire and postfire rooting depth on vegetation transpiration becomes
more pronounced. Water that may be available for transpiration by shrubs and trees under prefire conditions
moves beyond the rooting zone of herbaceous vegetation under postfire conditions. This difference in water
availability for transpiration increases the likelihood that postfire annual streamflow will increase at higher
wetness levels relative to lower levels. A similar effect has been noted by Zhang et al. [2001], who observed
that the effect of vegetation rooting depth on mean annual transpiration was greatest for intermediate wet-
ness conditions. This result also supports observations made by Bart and Hope [2010] and Feikema et al. [2013]
that increases in annual wetness enhance postfire streamflow change. For extremely wet years, transpiration
becomes slightly less sensitive to differences in prefire and postfire rooting depths as precipitation frequency
becomes sufficient to sustain transpiration at potential levels for both pre- and postfire vegetation.

The mixed modeling approach used in this study appears to be a viable technique for modeling postfire
changes in annual streamflow at a regional scale. Still, the findings should be evaluated in the context of the
assumptions and uncertainty of the modeling approach. The mixed model assumed that the watersheds
used in calibration were a random sample taken from a larger population of watersheds. The watersheds in
this study did not satisfy this assumption and were instead selected based on available USGS gauged water-
sheds meeting preestablished criteria. The effect of this bias in sampling on model inference is unclear.

Perhaps more significant is the limitation of using only 12 watershed pairs to estimate a regional-level
response. The 12 paired watersheds in this study were the only pairs within central and southern California
that satisfied the selection criteria. Watersheds in this region are subject to frequent fires, making it chal-
lenging to identify burned and control watersheds with fire-free periods that are sufficient to establish a cal-
ibration relation [Bart and Hope, 2010]. The small number of watersheds contributed to large uncertainty
associated with the regional estimates of postfire annual streamflow (e.g., 82%–200% for Model 5). None-
theless, predictions of postfire streamflow change based on the regional estimates are likely to have less
uncertainty and represent an improvement over predictions based on individual watershed experiments.

An increase in the number of paired watersheds would not only reduce uncertainty in the results, but would
also allow the effects of watershed characteristics (e.g., watershed area, soil depth, etc.) on postfire stream-
flow change to be examined. For example, many of the burned watersheds with large postfire increases in
streamflow (Figure 3) are located in smaller watersheds (Table 1). However, there are confounding issues
with establishing a relation between watershed area and postfire streamflow change because many of the
larger watersheds that show little postfire streamflow change were subject to postfire droughts. In addition,
the larger watersheds are geographically clustered in the northern part of the study area, which could also
indicate subregional differences in postfire streamflow response. The mixed model may be used to tease
apart these confounding factors to identify watershed-level controls on postfire streamflow change.
Unfortunately, the complexity of the mixed model when incorporating watershed-level variables was not
supported by the data available in this study.

Figure 4. Predicted change (% and mm) in annual flow during the first postfire year, adjusted for annual wetness conditions. Dashed lines represent standard errors for the prediction.
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Finally, the use of remote sensing could be used to potentially improve the regional estimate of postfire
annual streamflow response. A single vegetation response curve was used in this study to represent vegeta-
tion recovery for all watersheds. However, for fires occurring within the satellite era, direct quantification of
the postfire recovery in each watershed may better characterize postfire hydrologic response, as vegetation
recovery may vary depending by species distribution and postfire meteorological conditions [Hope et al.,
2012]. Further, while this study used fire perimeters to quantify levels of postfire vegetation change, incor-
poration of remotely sensed burn severity metrics, such as the differenced Normalized Burn Ratio [Miller
and Thode, 2007], may also decrease the uncertainty of the results.

6. Conclusions

Previous investigations into the effect of fire on annual streamflow have shown that while postfire stream-
flow often increases, the effect may be quite variable from watershed to watershed. For this study, the
regional effect of fire on annual streamflow was estimated for watersheds in central and southern California.
Using a mixed modeling approach, the best model for predicting postfire streamflow change included a fire
variable that accounted for both differences in percentage area burned and postfire vegetation recovery, as
well as an interaction variable describing the influence of annual wetness conditions.

At a regional scale, postfire annual streamflow was predicted to increase 134% (82%–200%) during the first
postfire year assuming 100% area burned and average annual wetness conditions. Postfire response
decreased with lower percentages of watershed area burned and during subsequent years as vegetation
recovered following fire. Regional response also varied interannually based on annual wetness conditions,
with the effect of fire being smallest during dry years, greatest during wet years, and slowly decreasing dur-
ing very wet years. These findings provide watershed managers with a first-order estimate for predicting
postfire streamflow response in both gauged and ungauged watersheds. The results may also be used for
modeling the effects of climate change and changes in fire regimes on streamflow.
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