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Abstract
The effect of wildfire on peak streamflow and annual water yield has been investigated empiri-

cally in numerous studies. The effect of wildfire on baseflow recession rates, in contrast, is not

well documented. The objective of this paper was to quantify the effect of wildfire on baseflow

recession rates in California for both individual watersheds and for all the study watersheds

collectively. Two additional variables, antecedent groundwater storage and potential evapotrans-

piration, were also investigated for their effect on baseflow recession rates and postfire baseflow

recession rate response. Differences between prefire and postfire baseflow recession rates were

modeled statistically in 8 watersheds using a mixed statistical model that accounted for fixed and

random effects. For the all‐watershed model, antecedent groundwater storage, potential evapo-

transpiration, and wildfire were each found to be significant controls on baseflow recession rates.

Wildfire decreased baseflow recession rates 52.5% (37.6% to 66.0%), implying that postfire

reductions in above‐ground vegetation (e.g., decreased interception, decreased evapotranspira-

tion) were a stronger control on baseflow recession rate change than hydrophobicity. At an

individual watershed scale, baseflow recession rate response to wildfire was found to be sensitive

to intraannual differences in antecedent groundwater storage in 2 watersheds, with the effect of

wildfire on baseflow recession rates being greater with lower levels of antecedent groundwater

storage. Examination of burn severity for a subset of the study watersheds pointed to riparian

zone burn severity as a potential primary control on postfire recession rate change. This study

demonstrates that wildfire may have a substantial impact on fluxes to and from groundwater

storages, altering the rate at which baseflow recedes.
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1 | INTRODUCTION

Wildfire alters landscapes by eliminating above‐ground vegetation

cover and increasing hydrophobicity in soils (Ice, Neary, & Adams,

2004). These modifications, in turn, may affect watershed hydrology

by modifying vegetation interception, soil infiltration, and evapotrans-

piration (ET). In Mediterranean‐climate regions (MCRs), which are

located in parts of Australia, California, Chile, the Mediterranean Basin,

and South Africa and distinguished by their climate regime of warm,

dry summers and cool, wet winters, wildfires have been shown to

increase peak flows that produce flooding and debris flows (Cannon,

Gartner, Wilson, Bowers, & Laber, 2008; Keller, Valentine, & Gibbs,

1997; Wells, 1987) and increase annual flows that are important for

local water supplies (Bart, 2016; McMichael & Hope, 2007). However,

the effect of wildfire on baseflow, and in particular baseflow recession

rates, is more uncertain. Baseflow recession rates are a key tool for low
td. wileyonlinelibra
flow prediction (Tague & Grant, 2009) and hydrologic modeling

(Tallaksen, 1995) and provide insight into the mechanisms that control

baseflow generation. Understanding the role of wildfire on baseflow

recession rates is important in MCRs such as California that are subject

to frequent wildfire and droughts, both of which are expected to

increase in the future (Abatzoglou & Williams, 2016; Cook, Ault, &

Smerdon, 2015).

The effect of wildfire on baseflow in MCRs has primarily been

examined during the summer dry period when potential evapotranspi-

ration (PET) is high and recharge to storage is negligible. Baseflow vol-

umes during this period have been shown to increase following

wildfire (Colman, 1951; Crouse, 1961; Kinoshita & Hogue, 2011,

2015), and postfire baseflow recession rates have been shown to

decrease following the last storms of the wet season (Crouse, 1961;

Meixner & Wohlgemuth, 2003). Less is understood about how wildfire

affects baseflow during the wet season, when PET is lower and
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recharge to storage is more dynamic. Jung, Hogue, Rademacher, and

Meixner (2009) found that baseflow response to wildfire during the

wet season was variable in two adjacent southern California water-

sheds, with postfire baseflow volume increasing in one watershed

but not in the other. No known studies have examined the impact of

wildfire on baseflow recession rates during the MCR wet season.

Baseflow recession rates in MCRs have been shown to vary intra‐

annually with changes in antecedent groundwater storage and PET.

Lower baseflow recession rates have been associated with higher

levels of antecedent groundwater storage in California watersheds

(Bart & Hope, 2014). Meanwhile, higher baseflow recession rates have

been associated with higher rates of PET for MCR watersheds in

Australia and Turkey (Aksoy & Wittenberg, 2011; Wittenberg &

Sivapalan, 1999). The effect of these intra‐annual controls on baseflow

recession rate response to wildfire is unclear.

The primary objective of this study was to quantify the effect of

wildfire on baseflow recession rates in California for both individual

watersheds and for all the study watersheds collectively. Although

the effect of other forms of land‐cover or land‐use change on baseflow

recession rates have been previously examined (Bogaart, van der

Velde, Lyon, & Dekker, 2016; Federer, 1973), the effects of wildfire

remain unresolved. Differences between prefire and postfire baseflow

recession rates were modeled statistically in eight watersheds using a

mixed statistical model that accounted for fixed and random effects

(Hox, 2002; Raudenbush & Bryk, 2002). The secondary objective of

this study was to investigate how antecedent groundwater storage

and PET affect baseflow recession rate response to wildfire.
2 | THE EFFECT OF WILDFIRE ON
GROUNDWATER FLUXES

Groundwater discharge to a stream QGW varies as a function of

groundwater storage SGW:

QGW ¼ f SGWð Þ: (1)

The rate at which QGW decreases over time depends on the size,

geometry, porosity, saturated hydraulic conductivity, distribution, and

connectivity of groundwater stores (Brutsaert & Nieber, 1977; Chen

& Wang, 2013; Moore, 1997). SGW is frequently affected by additional
FIGURE 1 Conceptual model of fluxes affecting baseflow recession rates.
fluxes besides QGW (Figure 1). These fluxes may include ET directly

from groundwater ETGW (Kirchner, 2009; Szilagyi, Gribovszki, & Kalicz,

2007) and recharge to groundwater RGW, such that

ΔSGW ¼ f ETGW;RGW;QGWð Þ: (2)

Fluxes operating concurrently (i.e., during the recession period)

with QGW alter the rate of groundwater storage depletion and thus

the baseflow recession rate.

Wildfire directly decreases ETGW by reducing above‐ground

vegetation with access to the watertable and/or the capillary fringe

(i.e., phreatophytes; Figure 1). Phreatophytes are located predomi-

nately in and around riparian zones where the watertable is shallow

(Tsang, Hornberger, Kaplan, Newbold, & Aufdenkampe, 2014) and

changes in ETGW are likely to be most sensitive to vegetation transfor-

mation within this zone (Le Maitre, Scott, & Colvin, 1999). ETGW may

vary seasonally, increasing when PET rates are highest. Changes in

postfire ETGW may persist for years depending on the length of

postfire vegetation recovery (Hope, Albers, & Bart, 2012; Ireland &

Petropoulos, 2015).

Wildfire also affects RGW by altering water content above the SGW

water table (Figure 1). RGW during the recession period may occur from

upslope groundwater stores SGW‐upslope, where RGW can be sustained

following the end of a storm event (Jencso et al., 2009). RGW from

the unsaturated soil matrix Ssoil is likely to be limited to the period

immediately after a precipitation event and thus having little effect

on baseflow recession rates. Elevated Ssoil and SGW‐upslope levels may

occur when postfire reductions in above‐ground vegetation decrease

transpiration from these stores (Silberstein, Dawes, Bastow, Byrne, &

Smart, 2013). Elevated Ssoil and SGW‐upslope levels may also occur when

reduced levels of interception increase soil infiltration Rsoil during

storm events. Soil hydrophobicity, in contrast, may lower postfire Ssoil

and SGW‐upslope levels by decreasing Rsoil during storm events (Letey,

2001). The relative size of SGW and SGW‐upslope will depend on the

watershed. In the topographically complex watersheds, SGW may be

limited to riparian zones, but upslope SGW‐upslope are likely to be highly

variable (Jencso et al., 2009).

The overall effect of wildfire on baseflow recession rates

depends on the net change in nondischarge postfire groundwater flux

during the recession period. A net gain in SGW during the recession
ET = evapotranspiration
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period (i.e., slower groundwater depletion rate) decreases baseflow

recession rates and implies that processes related to postfire reduc-

tions in above‐ground vegetation (e.g., decreased interception,

decreased ET) are the dominant hydrologic control. Alternatively, a

net loss in SGW during the recession period (i.e., faster groundwater

depletion rate) increases baseflow recession rates and implies that

processes related to hydrophobicity are the dominant hydrologic

control.
3 | WATERSHEDS

Watersheds in this study were selected from all available US

Geological Survey (USGS) streamflow network gauges in southern

and central California. Watersheds were evaluated for inclusion

based on absence of major diversions or regulations (e.g., dams), lack

of persistent winter snow cover, limited (less than 5%) urbanization

or agriculture, data quality, and having no additional large wildfires

(greater than 5% of watershed area) during the prefire and postfire

periods. Wildfire history for each watershed was obtained from the

Fire and Resource Assessment Program (http://frap.fire.ca.gov). Daily

streamflow data were acquired from the USGS (waterdata.usgs.gov).

Daily precipitation totals were generated by merging two gridded

precipitation data products: the monthly, 2.5 arcminute Precipita-

tion‐elevation Regressions on Independent Slopes Model produced

at Oregon State University (http://prism.oregonstate.edu), and the

daily, 15 arcminute US Unified Precipitation dataset provided by

the National Oceanic and Atmospheric Administration Climate Pre-

diction Center (http://www.esrl.noaa.gov/psd), in order to improve

the temporal and spatial resolution over that of the individual data

sets (Hope, Decker, & Jankowski, 2008). Daily gridded temperature

data was obtained from the National Oceanic and Atmospheric
FIGURE 2 Location of study watersheds in California
Administration Climate Prediction Center (ftp://ftp.cpc.ncep.noaa.

gov/precip/daily_grids). Watershed characteristics were acquired

from the Geospatial Attributes of Gages for Evaluating Streamflow

database (Falcone, 2011).

Only eight watersheds were found suitable for analysis based on

the selection criteria in this study. Watersheds with areas less than

~50 km2 had to be excluded due to the poor gauging precision of

low flows for USGS gauges (Archfield & Vogel, 2009), which prevented

an accurate representation of baseflow recession rates in those

watersheds. Many additional watersheds had to be excluded due to

the frequent occurrence of wildfires exceeding the 5% area threshold

during the prefire and postfire analysis periods. A map and description

of the eight selected watersheds is given in Figure 2 and Table 1,

respectively. Daily streamflow data for the watersheds are available

in S1. The watersheds are located along the Coast Range of central

California and the Transverse Range of southern California. The water-

sheds are characterized by steep topography with peak elevations near

2000 m. The wet season extends from late fall (November) to early

spring (April) and is dominated by cyclonic frontal systems approaching

from the Pacific Ocean. Mean annual precipitation in the watersheds

ranges from a little more than 600 mm to over 1100 mm. Mean annual

streamflow is more variable, ranging from 120 mm to over 750 mm.

During the summer dry season, flow ceases in many of the watersheds.

The primary vegetation in most of the watersheds is chaparral shrubs,

with grasslands, coastal sage scrub, oak woodlands, and forests also

being common (Callaway & Davis, 1993).

Wildfire characteristics for each watershed are provided in

Table 2. The percentage of area burned varied from 20% to 100% of

the watershed area. The average length of the prefire period was

16.5 years, ranging from 11 to 19 years. A postfire length of 7 years

was used for all watersheds except Nacimiento, which had only 3 years

of postfire data available.

http://frap.fire.ca.gov
http://usgs.gov
http://prism.oregonstate.edu
http://www.esrl.noaa.gov/psd
ftp://ftp.cpc.ncep.noaa.gov/precip/daily_grids
ftp://ftp.cpc.ncep.noaa.gov/precip/daily_grids


TABLE 1 Summary of watershed characteristics

Watershed
name USGS ID

Area
(km2)

Mean annual
precipitation (mm)

Mean annual
PET (mm)

Mean annual
streamflow (mm)

Dominant
geology type

Mean
slope (%)

Riparian zone
forest percentage

Riparian
zone shrub
percentage

Arroyo Seco 11152000 625.1 809 664 243 sedimentary 34.7 48.4 40.6

Big Sur River 11143000 120.6 1,163 640 753 granitic 43.6 76.1 22.9

City Creek 11055801 50.5 781 729 226 quaternary 34.4 12.0 82.5

Lopez Creek 11141280 54.0 717 741 170 sedimentary 37.1 78.4 20.3

Nacimiento River 11148900 403.5 692 745 409 sedimentary 21.3 31.3 41.8

San Antonio River 11149900 556.4 633 737 174 sedimentary 19.5 21.8 36.2

Santa Paula Creek 11113500 103.3 678 709 220 sedimentary 34.4 34.9 53.0

Sespe Creek 11111500 128.5 850 552 120 sedimentary 26.5 41.2 50.4

Note. PET = potential evapotranspiration.

TABLE 2 Fire characteristics, analysis periods, and calibration variables

Catchment Fire year Fire size (%) Prefire period Postfire period Prefire events Postfire events Median b value ΔQcrit (mm)

Arroyo Seco 1977 63 1967–1977 1978–1984 42 45 2.058 0.1

Big Sur 1977 92 1967–1977 1978–1984 41 38 1.985 0.25

City 2003 94 1986–2003 2004–2010 27 11 1.872 0.4

Lopez 1985 100 1968–1985 1986–1992 26 4 1.716 0.4

Nacimiento 1996 20 1980–1996 1997–1999 95 17 1.954 0.1

San Antonio 1985 31 1967–1985 1986–1992 73 17 1.658 0.12

Santa Paula 1985 71 1967–1985 1986–1992 41 10 1.782 0.2

Sespe 1985 40 1967–1985 1986–1992 30 8 1.884 0.2
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4 | METHODOLOGY

4.1 | Baseflow recession rates

Baseflow recession curves were defined as a consecutive decline in the

streamflow hydrograph for 5 or more days following the exclusion of

the first 2 days after a hydrograph stormflow peak to minimize the

impact of storm‐related flows. A daily precipitation threshold of

5 mm during the recession period was also included to account for

precipitation events that may have decreased baseflow recession rates

but not increased baseflow volumes.

Although baseflow recession curves may be analyzed directly from

the recession limb of a streamflow hydrograph using an exponential or

nonlinear model (Chapman, 1999; Wittenberg, 1999), Brutsaert

and Nieber (1977) proposed comparing the rate of baseflow change

dQ/dt to baseflow magnitude Q on a log(−dQ/dt) − log (Q) plot. This

relation is represented as

−
dQ
dt

¼ f Qð Þ: (3)

The time variable is eliminated using this approach, allowing

baseflow recession rates for a given baseflow magnitude to be

comparable between baseflow recession curves. This relation is

referred to as the recession slope curve (Rupp & Selker, 2006a) and

frequently follows a power‐law function

−
dQ
dt

¼ aQb; (4)

where Q is baseflow discharge in mm, t is time (daily), a is the value of

−dQ/dt when Q = 1, and b is the slope of the log(−dQ/dt) − log (Q)
relation (Clark et al., 2009). dQ/dt was computed as the difference

between two consecutive points on a baseflow recession curve,

dQ
dt

¼ Qi−Qi−1

Δt
; (5a)

and Qwas computed as the mean of two consecutive recession points,

Q ¼ Qi þ Qi−1

2
: (5b)

Low precision in the gauging of low flows may hinder investi-

gations of the recession slope curve due to scatter and

discretization associated with low magnitude recession flows on a

log(−dQ/dt) − log (Q) plot. These errors were accounted for by

increasing the time interval Δt for flows below the precision of

the gauge until the change in baseflow ΔQ over the time period

exceeded a critical threshold ΔQcrit (Rupp & Selker, 2006b). The

critical threshold was determined visually for each watershed

(Table 2).

Previous studies have demonstrated that values of b in the

power‐law relation of Equation 4 are less variable than values of a

(Biswal & Marani, 2010; Shaw, McHardy, & Riha, 2013). In this

study, the exponent b was fixed at a common value for each

watershed, leaving a single free parameter a for representing

baseflow recession rates. The fixed value of b was derived by fitting

a linear regression model with log‐transformed data (Xiao, White,

Hooten, & Durham, 2011) to each individual recession slope curve

in a watershed and selecting the median b value from among all

the curves (Table 2). a was then recomputed for all values along

the recession slope curve using Equation 4 with the fixed b. The
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median value of a from each individual recession slope curve was

used to represent the baseflow recession rate for that recession

slope curve. Baseflow recession data are available in S2.

4.2 | Mixed model

Baseflow recession curve data contains a hierarchical structure that does

not conform to the independence assumption that is required for linear

regression models (Watson, Vertessy, McMahon, Rhodes, & Watson,

2001). For individual watersheds, baseflow recession rates for individual

recession events within a given year are likely to be more similar than

between years. Baseflow recession rates represent the lower level of

the hierarchy (i.e., level 1) and are nested within years, which represent

the higher level of the hierarchy (i.e., level 2; Figure 3). When analyzing

all watersheds collectively, the hierarchical structure becomesmore com-

plex, with baseflow recession rates nested within years that are nested

within watersheds (Figure 3). This hierarchical structure is referred to as

having three levels. Baseflow recession rates for analyzing all watersheds

collectively may alternatively be nested by precipitation event (Figure 3).

Watersheds with baseflow recession rates produced from the same

precipitation event will likely be more similar than baseflow recession

rates produced from different precipitation events due to similarities in

antecedent groundwater storage across a region. Data with two

hierarchical structures is referred to as having crossed random effects

(Baayen, Davidson, & Bates, 2008).

Mixed modeling is a technique used to examine data containing a

hierarchical structure (Hox, 2002). Mixed models account for

hierarchies within data by partitioning model error to each level of the

hierarchy using variables containing random effects. Randomeffects rep-

resent the stochastic portion of the model, and fixed effects represent

the deterministic portion (Hox, 2002). A mixed model for representing

the individual watershed‐scale hierarchy in Figure 3 may be described as

yij ¼ β0 þ ∑
N

n¼1
βnxnij þ uj þ eij; (6)

where yij is the ith observation of baseflow recession rates (a) for the

jth year, β0 is the intercept of the model, N is the total number of
predictor variables, βn is the slope of the relation between the nth pre-

dictor variable and baseflow recession rates, xnij is the ith observation

of the nth predictor variable for the jth year, uj is the level 2 model

error for the jth year and eij is the level 1 model error for the ith obser-

vation from the jth year.

Model errors in mixed models are generally assumed to be inde-

pendent and normally distributed with a mean of 0 and a variance of

σ2. However, autocorrelation of level 1 model errors may occur with

longitudinal data such as baseflow recession rates if memory from

one baseflow recession event affects subsequent events. In some

cases, this autocorrelation may be explicitly modeled through the error

covariance matrix (Hox, 2002). However, when the available data at

the lowest hierarchical level is small, quantifying the autocorrelation

can be challenging. Fortunately, the effect of autocorrelation on mixed

modeling results, and particularly the fixed effects, has been shown to

be negligible when level 1 sample sizes are small (Hox, 2002;

Raudenbush & Bryk, 2002). The median number of baseflow recession

events within a given year for this study was 3, ranging from 1 to 11.

Because the primary objective was to understand how a fixed effect

variable, wildfire, affects baseflow recession rates, level 1 autocorrela-

tion was not explicitly accounted for in this study.

A mixed model for representing the all‐watershed hierarchy in

Figure 3 may be represented by

yi jk⋅lð Þ ¼ β0 þ ∑
N

n¼1
βnxni jk⋅lð Þ þ wl þ vk þ ujk þ ei jk⋅lð Þ; (7)

where yi( jk ⋅ l) is the ith observation of baseflow recession rate from the

cross‐classified jth year and kth watershed with the lth precipitation

event, xni( jk ∙ l) is the ith observation for the nth predictor variable from

the cross‐classified jth year and kth watershed with the lth precipita-

tion event, wl is the level 2 model error for the lth precipitation event,

vk is the level 3 model error for the kth watershed, ujk is the level 2

model error for jth year in the kth watershed, and ei( jk ∙ l) is the level 1

model error for the ith observation of baseflow recession rate from

the cross‐classified jth year and kth watershed with the lth precipita-

tion event (Hox, 2002).
FIGURE 3 Hierarchical structure for the
individual watershed and the all‐watershed
mixed models
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A Bayesian estimation procedure using Markov Chain Monte Carlo

(MCMC) techniques was used to calibrate the mixed model (Stegmueller,

2013). A Gibbs sampling algorithm with an improper, noninformative

prior was applied to each MCMC walk (Hadfield, 2010) and a Gaussian

distribution was assumed for the likelihood. Each model was calibrated

using 1,000,000 iterations with a thinning of 100. Model convergence

was evaluated visually, and model performance was evaluated using

the deviance information criterion (Hadfield, 2010),

DIC ¼ Dþ pD: (8)

D is a measure of model fit and defined as the mean deviance D

from all MCMC iterations. Deviance is calculated as

D ¼ −2 ln p yjθð Þð Þ; (9)

where p(y| θ) is the likelihood function and θ is a model parameter.

pD is a measure of model complexity, representing the effective

number of model parameters (Spiegelhalter, Best, Carlin, & van der

Linde, 2002). Smaller values of deviance information criterion signify

better model fit. All mixed modeling was implemented using the

MCMCglmm package (Hadfield, 2010) in the R programming

language (www.r‐project.org).

4.3 | Model parameters and development

In order to examine the effect of wildfire on baseflow recession

rates, individual watershed (Equation 6) and all‐watershed

(Equation 7) mixed models were developed to predict a (loge)

from three watershed variables, antecedent groundwater storage

(loge), PET, and wildfire. These variables were selected a priori based

on the hydrological processes that were expected to be important

controls on baseflow recession rates, with antecedent groundwater

storage and PET being key controls on intra‐annual baseflow recession

rates and wildfire being the primary variable of interest.

The seasonality of rainfall in California produces two hydrologic

regimes: a water‐limited summer dry season and an energy‐limited

winter wet season. Baseflow recession rates in central California

watersheds have been shown to decrease as watershed storages

are filled during the transition from the dry season to the wet

season (Bart & Hope, 2014). To account for intra‐annual differences

in antecedent groundwater storage for this study, an estimate of

antecedent groundwater storage for each baseflow recession event

was developed using precipitation cumulated from the beginning of

the water year (October 1) to the start of each baseflow recession

curve. This proxy for antecedent groundwater storage is similar to that

used in Bart and Hope (2014) but with precipitation substituted for

streamflow because streamflow is a component of the dependent vari-

able in the mixed model. Although cumulative antecedent precipitation

cannot account for decreases in watershed storage between precipita-

tion events, it was assumed that cumulative antecedent precipitation

would provide a first‐order approximation of antecedent groundwater

storage for each recession event, as was the case with cumulative

antecedent streamflow in Bart and Hope (2014).

PET for each recession curve was averaged from daily PET

values over the recession period. Daily PET was derived from daily

temperature data using the Blaney–Criddle transformation:
PET ¼ p 0:457�T þ 8:13ð Þ; (10)

where PET is the estimated PET (mm/day), T is the mean daily temper-

ature (°C), and p is the mean daily percentage of total annual daytime

hours at 35° latitude (Blaney & Criddle, 1962).

The effect of wildfire on baseflow recession rates was incorpo-

rated into the model via a wildfire variable representing watershed

conditions before and after wildfire. The variable ranged from 0 to 1,

with 0 representing prefire (mature) vegetation conditions and 1

representing complete elimination of vegetation over 100% of the

watershed. For the first postfire year, the change in watershed condi-

tions was assumed to be equivalent to the percentage of watershed

area burnt. For subsequent postfire years, the level of change in

watershed conditions was equal to percent area burnt multiplied by a

normalized postfire vegetation recovery curve (Bart, 2016) that was

developed from remote sensing studies of chaparral recovery in central

California (Hope, Tague, & Clark, 2007; McMichael, Hope, Roberts, &

Anaya, 2004). The normalized post‐fire vegetation recovery curve

was computed as {1.00, 0.63, 0.50, 0.40, 0.32, 0.25, 0.19} for the first

7 years following wildfire. This wildfire variable was found to be the

best predictor of postfire annual streamflow in California watersheds

amongst several wildfire variables tested in Bart (2016).

Two interaction variables were separately incorporated into the

mixed model in order to examine how antecedent groundwater

storage and PET modify baseflow recession rate response to wild-

fire. The first interaction variable between wildfire and antecedent

groundwater storage was generated from the product of the wildfire

variable with the cumulative antecedent precipitation variable and

investigated whether postfire baseflow recession rate change was

sensitive to high or low wetness conditions. The second interaction

variable between wildfire and PET was generated from the product

of the wildfire variable with the PET variable and examined whether

differences in PET rates produced different levels of postfire

baseflow recession rate change.

For mixed models, predictor variables are often centered to

contain a zero point in order to aid in the interpretation of model

results (Aguinis, Gottfredson, & Culpepper, 2013). Following the

recommendation of Enders and Tofighi (2007), for models directly

investigating the effect of wildfire on baseflow recession rates (i.e.,

primary objective), cumulative antecedent precipitation and PET were

grand‐mean centered for the individual watershed models and group‐

mean centered by watershed for the all‐watershed models. For all

models investigating how interaction variables may modify the effect

of wildfire on baseflow recession rates, cumulative antecedent precip-

itation and PET were group‐mean centered by water year.
5 | RESULTS

The relation between baseflow recession rates (a) and cumulative

antecedent precipitation for each of the eight watersheds is

displayed in Figure 4. Baseflow recession rates were separated by

prefire and postfire with symbol size corresponding to PET rates

during the recession event. Baseflow recession rates showed a

decrease with higher cumulative antecedent precipitation and the

relation between the two variables generally followed a power‐law

http://www.r-project.org


FIGURE 4 Plots of a from Equation 4 against cumulative antecedent precipitation, separated by prefire and postfire baseflow. Larger symbols
correspond to higher potential evapotranspiration (range 1.7 to 6.1 mm/day)
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function. PET was slightly correlated with cumulative antecedent

precipitation (Pearson's r = 0.61 across all watersheds) because max-

imum PET values occur in the spring at the end of the wet season.

The effect of correlation between these two independent variables

on the mixed model is unclear. For a given level of cumulative ante-

cedent precipitation, higher PET generally corresponded to a higher

value of a, although this effect was not ubiquitous, such as in City

or Sespe. Visually, postfire baseflow recession rates decreased rela-

tive to prefire baseflow recession rates in three watersheds, Arroyo
Seco, Big Sur, and City. Postfire baseflow recession rates in the five

other watersheds did not exceed the variability of the prefire

baseflow recession rates.

The values representing the mode and 95% credible (i.e., confi-

dence) intervals for each of the four fixed parameters in the individual

watershed and all‐watershed models are presented in Figure 5. Two of

the parameters, the intercept and cumulative antecedent precipitation,

were highly significant (i.e., credible intervals do not cross 0) for all of

the models. This supports the visual evidence in Figure 4 that baseflow



FIGURE 5 Coefficient (β) values and 95% credible intervals for intercept, cumulative antecedent precipitation, potential evapotranspiration (PET),
and fire variables in the individual watershed and the all‐watershed mixed models
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recession rates decrease with higher levels of antecedent groundwater

storage. For every doubling of cumulative antecedent precipitation,

the value of a decreased by 64.6% (62.4% to 67.5%) for the all‐

watershed model.

The effect of PET on baseflow recession rates was more variable

than cumulative antecedent precipitation, with four watersheds

(Arroyo Seco, Big Sur, Nacimiento, San Antonio) showing significant

increases in baseflow recession rates with higher rates of PET

(Figure 5). These four watersheds were clustered in the Santa Lucia

Mountains in the northern portion of the study region. The four north-

ern watersheds also corresponded to the four watersheds with the

most available data, averaging 92 baseflow recession events per

watershed over the period‐of‐record versus 39 for the southern

watersheds (Table 2). Thus, the effect of PET on baseflow recession

rates for the all‐watershed model was found to be statistically signifi-

cant. The all‐watershed model predicted that for every millimeter

increase in daily PET the value of a would increase by 33.5%

(23.2% to 49.1%).

At the individual watershed scale, baseflow recession rates

showed a significant decrease following wildfire in two watersheds,

Arroyo Seco and City (Figure 5), with a third watershed, Big Sur, being

nearly significant. Four additional watersheds showed nonsignificant
FIGURE 6 Coefficient (β) values and 95% credible intervals for interactio
models. PET = potential evapotranspiration
decreases in baseflow recession rates, including Nacimiento, which

had exceptionally wide uncertainty intervals due to having only 3

postfire years available for inclusion in the model (Table 2).

Collectively, these results produced a significant decrease in postfire

baseflow recession rate, with the all‐watershed model predicting that

awould decrease 52.5% (37.6% to 66.0%) during the first postfire year

assuming 100% burnt. This effect decreases linearly with lower

percentages of area burnt and nonlinearly according to the normalized

postfire vegetation recovery curve following the first year.

The effect of intra‐annual differences in cumulative antecedent

precipitation on postfire baseflow recession rate change is shown in

Figure 6. For two watersheds, Arroyo Seco and Big Sur, the interaction

variable showed significant increases, indicating that greater change in

postfire baseflow recession rates was observed with lower cumulative

antecedent precipitation than with higher cumulative antecedent

precipitation. None of the remaining individual watershed models, or

the all‐watershed model, showed significant changes in postfire

baseflow recession rate response with cumulative antecedent precipi-

tation. No value was obtained for Lopez due to limited postfire data.

The effect of PET on postfire baseflow recession rate change was

small and insignificant for both the individual watershed and the all‐

watershed models (Figure 6).
n variables in the individual watershed and the all‐watershed mixed
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6 | DISCUSSION

The results from the mixed model analysis demonstrated that anteced-

ent groundwater storage was the first‐order control on baseflow

recession rates in California watersheds, with lower baseflow reces-

sion rates associated with higher levels of antecedent storage

(Figure 5). This result is consistent with recent studies in California

watersheds that have suggested that decreases in baseflow recession

rates may be related to either a shift in the dominant storages contrib-

uting to baseflow from small, quickly depleting stores to larger, slower

depleting stores as the wet season progresses (Bart & Hope, 2014), or

similarly, an expansion and contraction of the active drainage network

(Biswal & Kumar, 2014). Across the watersheds, the effect of anteced-

ent storage on baseflow recession rates was very similar (Figure 5),

indicating that at individual watershed scales, the underlying mecha-

nisms that cause baseflow recession rates to evolve as storages fill

during the wet season are similar across the region.

A positive relation between PET and baseflow recession rates was

observed with the all‐watershed model and in the four northernmost

individual watersheds of the study. No significant relation was

observed in the four southern watersheds, which is similar to Tschinkel

(1963) who found that the effect of ET on baseflow recession rates

was negligible in a small watershed located near City Creek (Zecharias

& Brutsaert, 1988). The sensitivity of baseflow recession rates to PET

in the northern watersheds suggests that phreatophytes in the north-

ern watersheds may have greater contact with groundwater than in

the southern watersheds. However, the result is more likely due to

an insufficient range of PET values in the southern watersheds to

accurately characterize the relation between PET and baseflow reces-

sion rates. During the late spring (after May 1) when PET rates are

highest, the southern watersheds averaged less than 2 recessions over

the period of record versus 8.5 recessions for northern watersheds.

The lack of large PET values associated with baseflow recession rates

in the southern watersheds may have resulted in an ill‐defined relation

between PET and baseflow recession rates.

Following wildfire, baseflow recession rates in the all‐watershed

model decreased, which implies that there was a net gain to ground-

water during the recession period, likely through a combination of

decreased ET and/or decreased interception. It also implies that

the long‐term effect of soil hydrophobicity on baseflow recession

rates was smaller than the effect of vegetation change, though the

absolute effect of both is not known. At large scales, spatial hetero-

geneity in postfire hydrophobicity can diminish its capacity to
TABLE 3 Evaluation of riparian zone burn severity

Watershed Postfire recession rate change observed? Amount of

Arroyo Seco Yes

Big Sur No

City Yes

Lopez No

Nacimiento No

San Antonio No

Santa Paula No

Sespe No
decrease soil infiltration and groundwater recharge (DeBano, 2000;

Imeson, Verstraten, van Mulligen, & Sevink, 1992). Further, in some

cases the temporal effects of hydrophobicity may be limited to the

first few months following wildfire, depending on levels of hydro-

phobicity in the watershed and postfire meteorological conditions

(Shakesby & Doerr, 2006). Consequently, it appears that baseflow

recession rate change is primarily driven by postfire changes in ET

and not hydrophobicity.

For individual watersheds, the effect of wildfire on baseflow

recession rates was variable, with two watersheds showing large,

significant decreases in baseflow recession rates, five watersheds

showing small, nonsignificant decreases and one watershed showing

a small, nonsignificant increase. For the watersheds in this study that

were not significantly affected by wildfire, a lack of postfire change

in baseflow recession rates may reflect limited postfire change in ET

from groundwater (ETGW). This may occur when wildfire is either not

located in areas of the watershed where vegetation is in contact with

groundwater, such as the riparian zone, or when burn severity in these

areas is low. In the current study, burn severity was not explicitly

included in the mixed model because burn severity estimates via

Monitoring Trends in Burn Severity (MTBS) products (Eidenshink et

al., 2007) are not available for wildfires in two of the watersheds,

Arroyo Seco and Big Sur. In order to get an indication of whether ripar-

ian zone burn severity may have been an important control on

baseflow recession rate change, we qualitatively assessed the location

and burn severity of wildfires in the six watersheds with available

MTBS data using Google Earth (Table 3). MTBS classifies burn severity

into five classes (unburned, low, moderate, high and increased green-

ness) based of the differenced Normalized Burn Ratio from Landsat

images taken before and after a wildfire (Eidenshink et al., 2007).

The results of this post hoc analysis are consistent with riparian

zone burn severity being an important control on postfire baseflow

recession rate change. Of the six watersheds where burn severity data

was available, the one watershed where postfire baseflow recession

rate change was observed, City, was also the only watershed to show

moderate to high levels of riparian zone burn severity (Table 3). The

five remaining watersheds either had no burning in the riparian zone

or the fire passed through the riparian zone but left the vegetation

unburnt or burnt with low severity. While these results suggest that

postfire riparian ETGW may be a primary control on baseflow recession

rate change, further analysis and additional data will be needed to

substantiate this effect. A significant effect would mean that the

frequency of postfire baseflow recession rate change may be related
riparian zone within burn perimeter Severity of burnt riparian zone

moderate not available

large not available

large moderate to high

large unburned to low

none not applicable

none not applicable

large unburned to low

small low to moderate
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to riparian zone fire return intervals, which may differ from

adjacent upland areas (Luce et al., 2012). In City, the percentage of

riparian shrubs (82.5%) was much higher than in the other watersheds,

however, it is unclear if this contributed to its higher riparian zone burn

severity. Overall, riparian zone fire severity appears to be a potentially

important variable for predicting postfire baseflow recession rate

change.

Higher antecedent groundwater storage was found to reduce the

effect of wildfire on baseflow recession rates in two watersheds,

Arroyo Seco and Big Sur (Figure 6). Both of these watersheds were

sensitive to PET, indicating that ET from groundwater was likely an

important control on baseflow recession rates. During the early part

of the wet season, baseflow in MCR watersheds has been hypothe-

sized to be generated from small, quickly recharged groundwater

stores that are likely to coincide with saturated riparian areas (Bart &

Hope, 2014). As the wet season progresses, larger nonriparian ground-

water stores (SGW‐upslope) are filled and the primary control on

baseflow recession rates shifts to these larger stores. For a given ET

flux from groundwater, the effect on storage depletion will be propor-

tionally larger for a smaller store than a larger store. Further, vegeta-

tion may have better access to shallow riparian stores than larger

hillslope storages. Consequently, the effect of wildfire on baseflow

recession rates could be expected to be greatest early in the wet

season when phreatophyte vegetation have the greatest relative

impact on groundwater stores contributing to baseflow. It would also

be greatest during dry years, when decreases in baseflow recession

rates may be most valuable to watershed managers. This effect,

however, was not universal amongst the watersheds (Figure 6).

possibly due to an insufficient amount of available postfire data to

support the more complex interaction–variable model. As a result,

weak statistical power for the all‐watershed mixed model may have

contributed to its nonsignificance.

PET did not show any effect on postfire baseflow recession rate

change in this study (Figure 6). Many of the coefficient values

indicated a decrease in baseflow recession rate response to wildfire

with increasing potential ET, however, this is the opposite effect of

what would be expected based on the physical processes operating

in a watershed. These results suggest that the available data in this

study may not support the complexity of the mixed model when an

interaction term is included.

For the all‐watershed model, baseflow recession rates were

shown to decrease following wildfire. However, inference at this

regional scale was limited, particularly in regard to interaction vari-

ables, due to the inclusion of only eight watersheds. A greater number

of watersheds would allow for a more robust analysis of not only the

level 1 interaction variables included in this study (i.e., cumulative

antecedent precipitation and PET) but also level 2 interaction variables

(e.g., watershed area and soil depth) that would allow an examination

of how watershed characteristics affect baseflow recession rate

change. The inclusion of more watersheds in California, however, will

necessitate either relaxing the watershed selection criteria used in this

study and/or waiting for more wildfires to occur in gauged watersheds.

In conclusion, the purpose of this paper was to examine the impact

of wildfire on baseflow recession rates. The first‐order control on

baseflow recession rates was found to be intra‐annual differences in
antecedent groundwater storage, with baseflow recession rates

decreasing with increasing cumulative antecedent precipitation.

Baseflow recession rates also increased with higher rates of PET,

although this effect was highly variable amongst individual watersheds.

The all‐watershed model indicated that wildfire decreased baseflow

recession rates 52.5% (37.6% to 66.0%) during the first postfire year

assuming 100% burnt. This decrease implies that processes associated

with postfire reductions in above‐ground vegetation (e.g., decreased

interception and decreased ET) were a stronger control on baseflow

recession rates than hydrophobicity. At an individual watershed scale,

baseflow recession rate response to wildfire was found to be sensitive

to intra‐annual differences in antecedent groundwater storage in two

watersheds, with effect of wildfire on baseflow recession rates being

greater with lower levels of antecedent groundwater storage. Exami-

nation of burn severity for a subset of the study watersheds pointed

to riparian zone burn severity as a potential primary control on postfire

recession rate change. This study demonstrates that wildfire can have

a substantial impact on fluxes to and from groundwater storages,

altering the rate at which baseflow recedes.
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