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Abstract. Climate and wildfire are closely linked. Climate regulates wildfire directly over short timescales
through its effect on fuel aridity and indirectly over long timescales through vegetation productivity and the
structure and abundance of fuels. Prediction of future wildfire regimes in a changing climate often uses
empirical studies that presume current relationships between short-term climate variables and wildfire activ-
ity will be stationary in the future. This is problematic because landscape-scale wildfire dynamics exhibit
non-stationarity, with both positive and negative feedback loops that operate at different temporal and spa-
tial scales. This requires that such feedbacks are accommodated in a model framework from which wildfire
dynamics are emergent rather than pre-specified. We use a new model, RHESSys-WMFire, that integrates
ecohydrology with fire spread and effects to simulate a 60-yr time series of vegetation, fuel development,
and wildfire in a 6572-ha watershed in the Southern Sierra Nevada, USA, with a factorial design of increased
temperature and severe drought. All climate scenarios had an initial pulse of elevated area burned associated
with high temperature, low precipitation, and high fine fuel loading. There were positive correlations
between annual area burned and mean annual maximum temperature and negative correlations with annual
precipitation, consistent with understood direct effects of climate on wildfire in this system. Decreased vege-
tation productivity and increased fine fuel decomposition were predicted with increased temperature, result-
ing in long-term reduced fine fuels and area burned relative to baseline. Repeated extreme drought increased
area burned relative to baseline and over the long-term had substantially reduced overstory biomass. Over-
story biomass was resilient to repeat wildfire under baseline climate. The model system predicts that the
short-term direct effects of climate on wildfire can differ from long-term indirect effects such that the simple
maxim hotter/drier equals more wildfire can be both true and false, depending on scale.

Key words: area burned; climate change; complexity; ecohydrology; feedbacks; fire spread; model; scale; wildfire
regimes.

Received 15 September 2020; revised 5 March 2021; accepted 12 March 2021; final version received 13 May 2021. Corre-
sponding Editor: Joel Biederman.
Copyright: © 2021 The Authors. This is an open access article under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
� E-mail: mkenn@uw.edu

INTRODUCTION

Fire regimes and climate change
Wildfire is a vegetation disturbance that is dis-

tributed throughout the globe (Flannigan et al.
2009), and its prevalence varies along a resource

climate gradient (Krawchuk and Moritz 2011).
Trends in wildfire annual area burned and fre-
quency of large fires also vary globally (Riaño
et al. 2007), with some regions experiencing
increases (Westerling et al. 2006) and others expe-
riencing decreases (Turco et al. 2016). There is
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considerable interest in how anthropogenic cli-
mate change will modify global wildfire regimes
and this can be considered at both relatively
short-term (within a year) and long-term (years
to decades) timescales.

Climate drives wildfire over relatively short
timescales (within a year) by the direct effect on
fuel aridity of annual weather variables such as
same-year temperature and precipitation (Flanni-
gan et al. 2009). In this short-term, high tempera-
tures and low precipitation tend to be associated
with periods of increased fire activity and area
burned (Littell et al. 2009, 2018, Parisien and
Moritz 2009, Abatzoglou and Williams 2016,
Holden et al. 2018). Often precipitation and other
moisture-related variables are stronger predic-
tors than temperature alone (Parisien and Moritz
2009, Holden et al. 2018). Direct effects tend to
dominate in forested systems (McKenzie and Lit-
tell 2017) and the balance of the importance and
strength of these differ with the long-term cli-
mate and vegetation productivity of a given
region, exhibiting varying constraints (Krawchuk
and Moritz 2011).

Over longer time frames (years to decades), cli-
mate regulates decomposition and vegetation
productivity, which drives fuel buildup with
effects accumulating over many years. In some
systems, particularly arid regions characterized
by grasses and shrubs whose productivity is
moisture-limited (Littell et al. 2009, 2018, McKen-
zie and Littell 2017), prior-year precipitation is
correlated positively with annual area burned,
indicating an indirect facilitative effect of climate
on fine fuel abundance and connectivity (Littell
et al. 2009, Krawchuk and Moritz 2011). Other
ecosystems such as those in the Sierra Nevada,
California, exhibit both direct and indirect influ-
ences of climate on wildfire area burned (Littell
et al. 2009, 2018, McKenzie and Littell 2017) as
they exist in the middle of the resource produc-
tivity gradient.

While the climate–fire relationships described
above tend to be estimated at relatively coarse
spatial scales, forest management decisions are
made at the landscape scale. Landscape-scale
wildfire dynamics are complex (Newman et al.
2019) because they are governed by the interac-
tions of bottom-up or endogenous and top-down
or exogenous drivers (Kennedy and McKenzie
2010, Moritz et al. 2011, McKenzie and Kennedy

2012) with both positive and negative feedback
loops that may be scale dependent. Landscape-
level fire ecological dynamics are also non-
stationary, such that models that explain pro-
cesses driving a given system today may not
apply in the future, particularly with climate
change (McKenzie and Littell 2017, Newman
et al. 2019). Empirical models that rely on corre-
lation or regression analysis require that those
relationships are stationary even under novel cli-
mates (Harris et al. 2016, McKenzie and Littell
2017). Purely empirical models are unable to
accommodate temporal scale dependence of
wildfire–climate relationships, where long-term
climate effects on forest fuels are uncertain (Flan-
nigan et al. 2009). Nor can they accommodate
possible feedback loops among climate, vegeta-
tion and fuels, and wildfire, where increased
wildfire could possibly represent a negative feed-
back through self-limitation (Collins et al. 2009)
or a positive feedback through change to more
flammable vegetation such as grasses and shrubs
(Lenihan et al. 2003). Many landscape forest
models and dynamic vegetation models are a
mixture of mechanistic and empirically derived
relationships (Keane et al. 2004, Gustafson 2013,
Harris et al. 2016). While included mechanisms
may be better able to capture those long-term
effects and feedbacks, they also suffer from the
limitations of using empirical structures that
characterize relationships that may not be sta-
tionary in a changing climate.

Ecohydrology and wildfire
Hydrologic influences on vegetation and fuels

are likely to be a source of non-stationarity in
ecosystem-level climate–fire and vegetation
growth feedbacks including post-fire recovery.
Increasing temperature directly alters growth
(Yeh and Wensel 2000, Aubry-Kientz and Moran
2017, Johnson et al. 2017), but particularly in
higher elevation Mediterranean Regions,
temperature-driven changes in snowmelt and
changes in precipitation patterns can have sub-
stantial impacts on biomass accumulation
(Aubry-Kientz and Moran 2017). Stand growth
and development models such as the U.S. Forest
Service Forest Vegetation Simulator (Dixon 2012)
that use empirical growth curves or even mecha-
nistic models that do not account for changing
water availability with warming will miss these
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effects. In contrast, ecohydrological models that
combine physical hydrological processes with
ecological dynamics are uniquely suited to evalu-
ate both the short and long timescale impacts of
climate on both vegetation and wildfire at the
watershed scale. Yet, ecohydrological models
have not realized this potential because they do
not adequately represent disturbances such as
wildfire (Hannah et al. 2007).

Recently, the Regional Ecological Simulation
System (RHESSys; Tague and Band 2004) has
been integrated dynamically with a simple
stochastic model of fire spread (WMFire; Ken-
nedy et al. 2017, Kennedy and McKenzie 2017)
and fire effects (Bart et al. 2020). This model sys-
tem is the first of its kind to fully couple
hillslope-scale hydrologic processes and ecosys-
tem carbon/nutrient cycling with wildfire. It is
designed at an intermediate level of model com-
plexity to project aggregate patterns of fire
spread and fire regimes rather than replicating
individual wildfire events. It has been shown to
robustly replicate emergent fire regime character-
istics from contrasting systems without an exter-
nal specification of those characteristics
(Kennedy et al. 2017, Kennedy and McKenzie
2017, Bart et al. 2020). RHESSys-WMFire answers
many of the difficulties in predicting wildfire
under climate change. It is robust to non-
stationary relationships between climate and
wildfire because these are not specified inter-
nally, rather they emerge from feedbacks
between climate, the hydrological cycle, vegeta-
tion, fuels, fire spread, and fire effects. Both long-
term and short-term effects of climate on wildfire
can be evaluated through dynamic simulation of
wildfire and vegetation within a watershed over
several decades.

Here, we use RHESSys-WMFire to conduct a
simulation experiment in a watershed in the
Southern Sierra Nevada (California, USA; Fig. 1).
Recently, this ecoregion has had positive correla-
tions between current-year temperature and
wildfire area burned and negative relationships
between current-year precipitation and wildfire
area burned (Littell et al. 2009), with evidence for
weaker but significant positive relationships
between antecedent (prior-year) precipitation
and wildfire area burned. This indicates the sys-
tem is intermediate in the resource productivity
gradient, where climate has both a direct effect

and an indirect facilitative effect on wildfire. This
provides an exemplar for the complex dynamics
of wildfire under climate change and the context
under which a system may or may not be moved
to a more fuel-limited state in which past climate
relationships may no longer pertain.
We simulated a factorial design of increased

temperature and drought, both with and without
wildfire. This allowed us to disentangle potential
effects of increased temperature from those of
drought and their combined effects, and to better
understand what might drive future changes in
vegetation and wildfire. Our ultimate goal was
to use the simulations to understand both the
individual and combined effects of drought and
increased temperature on the short-term direct
and long-term indirect effects of climate on wild-
fire, vegetation, and fuels, and how those effects
interact.

METHODS

Study site
The 6572-ha Big Creek watershed in the South-

ern Sierra Nevada, USA (Fig. 1) encompasses the
Soaproot and Providence components of the
Southern Sierra Critical Zone Observatory and
the Providence component of the Kings River
Experimental Watersheds. The mean elevation is
1493 m and is located within the rain–snow tran-
sition zone. The mean annual precipitation is
131 cm, and the mean minimum and maximum
temperatures are 3.1°C and 14.4°C, respectively.
The site is characterized as a mixed-conifer forest
with the understory comprised of chaparral
shrubland species and young conifers. Histori-
cally, the area had a frequent-fire low-severity
fire regime with return intervals on the order of
5–9 yr over scales of 3–16 ha (Kilgore and Taylor
1979) that likely maintained low fine fuel accu-
mulations and a mosaic of canopy structures.
Nearby fire history reconstructions of the pre-
suppression era estimated mean intervals
between fires of 1.2 yr, mean fire size ranging
from 120 to 300 ha, and fire rotations ranging
from 8 to 24 yr with fires seen to be self-limiting
(Scholl and Taylor 2010). Recent land and fire
management have resulted in a shift to a higher
density of smaller diameter size classes (Scholl
and Taylor 2010, McIntyre et al. 2015). Further
site details are given in Appendix S1.
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Fig. 1. Map of the study area including topography, land classification, and location in California, USA. Dark
blue lines show major streams, and the black lines shows the watershed boundary. Elevation contours are given
in meters.
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RHESSys ecohydrology and calibration
Regional Ecological Simulation System is a spa-

tially distributed model of fully coupled ecohy-
drologic processes. For this paper, we used
RHESSys version 7.0. RHESSys partitions the
landscape into spatial units (typically 30–120 m
cells termed patches), that account for spatial vari-
ation in meteorologic (temperature and precipita-
tion) forcing and radiative environments. Each
spatial unit includes overstory and understory
vegetation, litter, and organic soil. Vegetation
growth in RHESSys occurs by modeling photo-
synthesis, respiration, and the allocation of net
assimilation to storage (as non-structural carbohy-
drate), leaves, stems, and roots. Plant components
turnover (such as seasonal litterfall) and any vege-
tation mortality feeds coarse wood debris and lit-
ter carbon and nitrogen pools, which decompose
to soil organic matter as a function of material
quality, moisture, and air temperature. Most eco-
physiological processes vary with species-specific
parameters. To generate the landscape watershed
model, parameter sensitivity analysis, spin-up,
and calibration were performed in a multi-step
process detailed in Appendix S1.

Additional details on RHESSys estimates of car-
bon, evapotranspiration (ET), and potential evap-
otranspiration (PET) can be found in Tague and
Band (2004), more recent updates in (Garcia et al.
2013, Tague et al. 2013, Garcia and Tague 2015),
on the RHESSys github site (https://github.com/
RHESSys/RHESSys), and in Appendix S1.
RHESSys model skill at estimating plant carbon
cycling and growth, and hydrologic processes (in-
cluding evapotranspiration, snowmelt, and run-
off) in semi-arid systems is well documented (in
particular, see Tague et al. 2013, Vicente-Serrano
et al. 2015, Bart et al. 2016, Garcia et al. 2016, Son
and Tague 2019, Tsamir et al. 2019).

RHESSys and WMFire
WMFire is a stochastic model of fire initiation

and spread that is described in detail in Kennedy
et al. (2017). The model successfully reproduces
spatial patterns of fire spread (Kennedy and
McKenzie 2017) and aggregate fire regime char-
acteristics (Kennedy et al. 2017) in contrasting
fire regimes. Each month RHESSys passes to
WMFire variables that are required to simulate
fire spread. The monthly mean fine fuel load (kg/
m2) is represented by RHESSys litter carbon

pools that approximate 1–100-h fuel classes.
Mean monthly actual and potential evapotran-
spiration (ET and PET, respectively; mm�m−2�d−1;
Stephenson 1998) are used by WMFire to calcu-
late relative deficit (1—ET/PET; Swann et al.
2012, Kennedy and McKenzie 2017) for both the
understory and the overall canopy.
Fire initiation and spread are stochastic in

WMFire. The number of ignitions tested each
month was drawn from a Poisson distribution
with a mean of 2 ignitions per month. Ignition
locations were then located randomly within the
watershed. Probability of ignition success
depended on the fine fuel load and understory
relative deficit. With successful ignition, the
probability of spread to neighboring cells
depended on fine fuel load, overall relative defi-
cit, direction of spread relative to the topographic
slope (uphill or downhill), and direction of
spread relative to the wind direction.
After fire spread is simulated on the water-

shed, RHESSys interprets the spread probability
as a fire intensity index (FII) that is used to calcu-
late fire effects on vegetation. For all patches that
experience fire, RHESSys consumes a proportion
of the surface fuels (litter, coarse woody debris)
after empirical equations in the Consume model
(Prichard et al. 2017). Understory and overstory
biomass for the model are defined based on
height thresholds. Understory mortality is a
function of FII and overstory mortality is a func-
tion of the surface and understory biomass con-
sumed. Thus, the RHESSys fire effects model
accounts for the role of ladder fuels (understory
canopies) in propagating fire into the canopy.
RHESsys also differentiates between biomass
consumed and biomass lost to vegetation mortal-
ity but remains on the landscape and is later
added to litter pools and ultimately decomposes.
The proportion of understory and overstory mor-
tality that is consumed also varies with FII. Bart
et al. (2020) showed the fire effects module to
reproduce expected patterns in wildfire effects
and recovery for several diverse watersheds,
including Big Creek.

Simulation study design
We implemented a simple factorial design of

temperature and precipitation to represent cli-
mate change. A more complex representation of
climate change that incorporates downscaled
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general circulation model (GCM) predictions
would complicate the simple scenarios that we
investigated and impede our ability to explore
the distinct effects of increased temperature and
changes to precipitation on fire regimes in sys-
tems like these. For the baseline scenario (no
change; Base), we used historical daily weather
obtained from the Grant Grove station (NOAA
GHCND:USC00043551) over the water years
1942–2000 (hereafter simulation years 1–59). For
the temperature scenario, we add +2°C and
+4°C (Plus2, Plus4, respectively; Fig. 2) to the
daily minimum and maximum temperatures.
These values were chosen to be consistent with
moderate to high warming. Climate projections
of mean annual precipitation generally show
minimal change in California (Cayan et al. 2007);
however, inter-annual variability of precipitation
is expected to increase, with dry years becoming
drier and wet years becoming wetter (Swain
et al. 2018). By the end of the 21st century, Berg
and Hall (2015) have estimated that the fre-
quency of extremely dry years may increase 1.5–
2 times in California. To simulate a drought
effect, we repeated daily precipitation from a
decade (2009–2018) encompassing recent
extreme California drought years and repeated it
over the historical daily precipitation every 10 yr
(simulation years 5–14, 25–34, 45–54; Drought;
Fig. 2). This resulted in six total climate scenar-
ios: Base, BasePlus2, BasePlus4, Drought,
DroughtPlus2, and DroughtPlus4.

RHESSys is deterministic whereas WMFire is
stochastic. For each scenario, we conducted a sin-
gle run of RHESSys without wildfire (NoFire) to
isolate the effects of climate change on vegetation
and fuels, which would represent its indirect
long-term effect on wildfire. We then simulated
200 Monte Carlo (MC) replicates of the fully cou-
pled model with wildfire spread and effects
(Fire). This number of simulations takes an
experimental design approach to balance the
computational burden of the fully coupled model
with the expected variability in model predic-
tions (Kennedy 2019). This resulted in 6 scenar-
ios × 200 MC replicates for a total of 1200
simulations.

Analysis: fire regime summaries
All fire regime and vegetation variables were

summarized as mean values in a water year

(October–September). We evaluated short-term
direct climate effects on area burned by calculat-
ing correlations for each replicate time series
between log of annual area burned for those
years with at least one fire and the following cli-
mate variables: annual mean maximum tempera-
ture, summer mean maximum temperature, and
annual precipitation the year of the fire, and
annual precipitation the year preceding the fire.
The distributions of correlations were compared
across scenarios to understand how direct effects
of climate were predicted to vary with longer-
term climate patterns.
We summarized trajectories of annual area

burned across replicates for each scenario to
understand common temporal patterns and vari-
ability. For each simulation year, we calculated
the first quartile, median, and third quartile of
annual area burned across all replicates for each
scenario. This highlights prominent periods of
wildfire activity for a given scenario, though
ignoring the potential temporal dependence in
area burned for a given time series replicate. Tra-
jectories of area burned over time across all repli-
cates are given in Appendix S1.
Since each simulated time series represents

an independent replicate in the simulation
study design, we also summarized each by
common wildfire regime characteristics: mean
annual area burned (AAB; ha), mean fire return
interval for all successful ignitions anywhere in
the watershed (FRI0; yr−1), mean fire return
interval for fires >100 ha anywhere in the
watershed (FRI100; yr

−1), and natural fire rota-
tion (NFR; yr; calculated as the ratio of the area
of the watershed to mean annual area burned;
Heinselman 1973). We also identified simula-
tion years where more than 50% of model repli-
cates had area burned >400 ha and overlaid
these on climate and vegetation time series in
order to evaluate climate and vegetation condi-
tions in the proximity of higher wildfire activity
for each scenario.

Analysis: vegetation summaries
We focused on trajectories of overstory and

understory aboveground biomass and fine fuel
loading. Daily data were aggregated to annual
mean values for both the Fire and NoFire sce-
narios to match the resolution of area burned
metrics. For each simulation year in the Fire
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scenarios, we calculated the first quartile, med-
ian, and third quartile of vegetation biomass
across all replicates for each climate scenario,
and graphed those across time. Graphs of vege-
tation biomass across all fire replicates are given
in Appendix S1. We used a simple linear trend
analysis to understand the trajectory of vegeta-
tion and fuels over time, and how that might
differ among the scenarios. We calculated linear
trends separately for each fire replicate and
evaluated the distribution of the slope and inter-
cepts for the fire and compared those with the
NoFire run for each scenario. These were calcu-
lated after simulation year 10 to understand the
trends after the first decade with wildfire.

Model corroboration
While WMFire and RHESSys have been

through rigorous peer review and WMFire has
been shown to robustly replicate spatial patterns

of fire spread and fire regime characteristics of
different watersheds, it is also important to cor-
roborate current results with patterns expected
for a new watershed. We compared simulated
values for mean annual area burned, fire return
interval, and NFR to fire history reconstructions
of the area to corroborate the model skill in
reproducing fire regime characteristics (Table 1).
We expected mean fire size between 120 and
300 ha, fire return interval of 1.2 yr (years
between at least one fire across the entire water-
shed), and fire rotation between 8 and 24 yr. We
also compared correlations between climate vari-
ables and area burned with those estimated in
the region, with expected positive correlation
between current-year temperature and area
burned, negative correlation between current-
year precipitation and area burned, and a weaker
positive correlation between prior-year precipita-
tion and area burned.
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Fig. 2. Time series of annual climate variables for each climate scenario. Total water year precipitation and
annual mean maximum and minimum temperatures. Mean precipitation across the simulation time period for
each scenario is given as a solid horizontal line. Points represent years where >50% of independent Monte Carlo
replicate simulations have >400 ha annual area burned.
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RESULTS

Short-term climate–fire correlations
Predicted log annual area burned was posi-

tively correlated with both annual and sum-
mer mean maximum temperature and
negatively correlated with current-year annual
precipitation (Fig. 3; Plus2 scenario results are
given in Appendix S1: Fig. S1). The magni-
tudes of these correlations differed by sce-
nario. Correlation between predicted log
annual area burned and previous year precipi-
tation was positive for the Base and Drought
scenarios, was negative for BasePlus4, and
centered at zero for the DroughtPlus4 scenario
(Fig. 3). The general patterns of these correla-
tions match those expected for the area (posi-
tive with current-year temperature, negative
with current-year precipitation, and weaker
positive with prior-year precipitation), corrob-
orating the ability of the model to replicate
short-term fire–climate relationships.

Fire regime characteristics: large fire years and
climate

For all scenarios, there was a peak in pre-
dicted annual area burned within the first dec-
ade of the simulation following the fire-free
spin-up period (Fig. 4; Plus2 scenarios and a
graph of all model replicates are given in
Appendix S1: Figs. S2, S3). In order, this peak

area burned was highest in the Drought scenar-
io, followed by DroughtPlus2, DroughtPlus4,
Base, BasePlus2, and BasePlus4.
After the initial decade of wildfire activity,

all scenarios showed cycles of large fire years.
The height of the peaks of wildfire area
burned declined over time (Fig. 4). Years in
the Base scenario with more than 50% of sim-
ulation replicates having predicted area
burned >400 ha occurred in years with high
to moderate mean temperatures and those of
low annual precipitation that followed higher
annual precipitation (Fig. 2), and had high to
moderate fine fuel loading (Fig. 5). Regardless
of Base or Drought precipitation, scenarios
with higher mean temperature (Plus2, Plus4)
had lower area burned with similar temporal
patterns of occurrence (Fig. 4; Appendix S1:
Figs. S2–S4). This indicated that the indirect
long-term effect of increased mean tempera-
ture reducing productivity and increasing
decomposition of fine fuels (Fig. 5) is stronger
than the direct effect on wildfire of a mean
increase in temperature of 4°C. Over the entire
simulation period, DroughtPlus4 had less pre-
dicted mean annual area burned than Base
(Table 1; Appendix S1: Fig. S4), associated
with a reduction in biomass due to a larger
initial pulse in wildfire (Fig. 4) followed by
decreased productivity and increased decom-
position of fine fuels (Fig. 5).

Table 1. Summary statistics for simulated variables.

Variable† Fire scenario Base BasePlus4 Drought DroughtPlus4

AAB‡ (120–300) Fire 299.7 (41.0) 192.4 (34.1) 428.2 (105.7) 202.3 (58.5)
FRI100§ Fire 4.9 (1.4) 5.5 (1.4) 5.9 (1.4) 6.8 (2.5)
FRI1§ (1.2) Fire 1.05 (0.03) 1.02 (0.02) 1.15 (0.05) 1.15 (0.05)
NFR¶ (8-24) Fire 22.4 (3.3) 35.4 (7.4) 16.5 (5.0) 37.1 (20.0)
Overstory# NoFire|| 7.88 7.41 7.03 6.44
Overstory Fire|| 5.5 (0.40) 6.8 (0.15) 4.4 (0.41) 5.6 (0.37)
Understory# NoFire 0.94 0.95 0.35 0.33
Understory Fire 0.56 (0.06) 0.59 (0.05) 0.27 (0.03) 0.27 (0.02)
Fine fuels# NoFire 0.38 0.19 0.2 0.11
Fine fuels§ Fire 0.30 (0.01) 0.18 (0.003) 0.17 (0.008) 0.11 (0.003)

† For each variable with a comparable fire history, the reconstructed value is given in parentheses next to the variable name
in the first column.

‡ Mean annual area burned (ha).
§ Fire return interval for fires of 100 ha, or any burned pixel (subscripts of 100 and 1, respectively; years).
¶ Natural fire rotation (years).
# Vegetation variables (overstory, understory, and fine fuels) refer to mean biomass amounts (kg/m2).
|| A single value mean is given for the NoFire scenarios with one simulation. For simulations with fire, the mean values are

given across replicates, with standard deviation in parentheses.
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Fire regime characteristics: fire return interval
The return interval for fire starts (any success-

ful ignition that burns at least 1 pixel across the
entire watershed) was shorter with an increase in
mean temperature relative to baseline and was
longer for drought relative to baseline (Table 1;
Appendix S1: Fig. S4). The return interval for the
occurrence of fire >100 ha across the entire
watershed was similar among all scenarios, with
larger variability for DroughtPlus4 (Table 1). The
return interval was shortest for Base and longer
for Drought, reflecting the synchrony of fire
occurrence with simulated drought periods and
longer fire-free intervals between droughts
(Fig. 4). Generally, these fire regime statistics
were similar to reconstructions in the study
region (Kilgore and Taylor 1979, Scholl and Tay-
lor 2010), corroborating the robustness of the

model system to reflect expected fire regime pat-
terns.

Climate impact on vegetation and fine fuels
without wildfire
Under baseline climate (Base) without wildfire

(NoFire), both overstory and understory above-
ground biomass were predicted to have an
increasing trend (Fig. 5; Appendix S1: Fig. S10).
Both overstory and understory aboveground bio-
mass were reduced with drought relative to
baseline (Table 1), with cycles of decline and
recovery corresponding to the simulated drought
periods (Figs. 2, 5). Proportional declines in bio-
mass with drought were greater for understory
vegetation than for overstory vegetation. Pre-
dicted overstory biomass was lower with
increased temperature, indicating decreased

Annual precipitation Previous annual precipitation

Annual mean maximum temperature Summer mean maximum temperature

Base BasePlus4 Drought DroughtPlus4 Base BasePlus4 Drought DroughtPlus4
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Fig. 3. Distribution of Pearson’s correlation coefficients between annual area burned for years with a wildfire
and climate variables. Distributions represent variability across 200 independent Monte Carlo replicates for each
scenario.
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productivity (Table 1). Temperature had a negli-
gible effect on understory aboveground biomass.

Under baseline climate (Base) without wildfire
(NoFire), fine fuels were predicted to have a
slowly decreasing trend (Fig. 5; Appendix S1:
Fig. S10). Drought substantially reduced fine fuel
loading relative to baseline, likely due to reduced
accumulation associated with lower above-
ground biomass. For a given precipitation sce-
nario, fine fuel loading decreased with increased
mean temperature (Table 1).

Climate impact on vegetation with wildfire
With the return of fire to the system, there was

a substantial reduction in predicted overstory
biomass for all climate scenarios over the entire
time series (Table 1). After the initial decline in
overstory biomass associated with the first pulse

of wildfire, baseline precipitation scenarios had a
stable and slightly increasing trajectory of over-
story biomass (Fig. 5; Appendix S1: Fig. S10).
This implies that with baseline precipitation
there is recovery to a state that is resilient to sub-
sequent wildfire after the initial wildfire pulse.
The drought scenarios had a gradual decline in
overstory biomass after the initial pulse of wild-
fire (Appendix S1: Fig. S10) with wide swings
that had lower nadirs and lower peaks of over-
story biomass than without wildfire. The lower
overstory productivity in drought scenarios was
exacerbated by the occurrence of wildfire during
the drought period. The scenarios with increased
mean temperature had more overstory biomass
for a given precipitation scenario, associated
with the reduced fire activity with increased
mean temperature.
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Fig. 4. Annual area burned (AAB; ha) with simulation water year for each climate scenario. The line represents
median AAB across independent Monte Carlo replicate simulations for a given year, and the ribbon encompasses
the first and third quartiles across all replicates.
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Predicted understory biomass was also less
for baseline scenarios with fire than for NoFire
(Fig. 5, Table 1). After the initial reduction asso-
ciated with the first fire period, understory bio-
mass under baseline scenarios (regardless of
temperature) showed a stable trajectory indicat-
ing a steady-state condition, with periods of
reduction and recovery associated with times of
substantial wildfire events (Fig. 5). Understory
biomass and litter in the drought scenarios had
pronounced cycles of biomass loss and recovery
corresponding to the effects of wildfire and the
simulated drought periods. The initial reduction
associated with the first fire period reduced
understory biomass well below that in the
NoFire scenario. Peak biomass in those periods

of recovery exceeded peak biomass in the
NoFire scenario, possibly enabled by reduced
overstory biomass. There was little difference in
understory biomass associated with increased
temperature for both Base and Drought (Fig. 5,
Table 1).
Predicted fine fuel loading was less for the

baseline scenarios with Fire relative to NoFire
(Fig. 5, Table 1). There was an initial steep reduc-
tion following the first fire period, then a steady
and slow decline in fine fuel loading for the
remainder of the simulation. With drought, the
cycle of litter reduction and recovery followed a
similar trajectory to the NoFire scenario, with
lower nadirs and higher peaks (Fig. 5). Regard-
less of Base or Drought, higher temperature was

(a) (b)

NoFire Fire

NoFire Fire

NoFire Fire

3

4

5

6

7

8

0.3

0.6

0.9

0 20 40 60 0 20 40 60

0.1

0.2

0.3

0.4

0.5

Simulation Year

O
ve

rs
to

ry
 (

kg
 m

−
2 )

U
nd

er
st

or
y 

(k
g 

m
−

2 )
F

in
e 

fu
el

s 
(k

g 
m

−
2 )

Base BasePlus4 Drought DroughtPlus4

Fig. 5. Vegetation variables with simulation water year for each climate scenario. For NoFire simulations, a sin-
gle time series of vegetation is given for each scenario. For Fire simulations, the lines represent median values
across independent Monte Carlo (MC) replicate simulations for a given year for each scenario and the ribbon
encompasses the first and third quartiles across all replicates for a given scenario. Points represent years where
>50% of independent MC replicate simulations have >400 ha annual area burned for the scenario. Line types dif-
ferentiate the scenarios and match those in other figures.
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associated with lower fine fuel loading across the
simulation period (Table 1).

DISCUSSION

The bidirectional coupling of wildfire with
ecohydrology accomplished by RHESSys-
WMFire has illuminated feedbacks between cli-
mate and wildfire on landscape-level patterns of
vegetation structure and fuels. The model results
presented here have a particular context worthy
of highlighting. The simulations began with a
fire-free spin-up to allow dynamics to stabilize,
representing the condition of the forest without
recent wildfire and acting as a surrogate for fire
exclusion in the watershed. Then, fires were
tested for start and spread without suppression.
This simulation context is akin to a management
strategy of allowing wildland fires to burn (Par-
sons et al. 1986) with no further fuel manage-
ment. The simulations occurred within a single
watershed, such that wildfires interacted with
each other in a relatively limited area. This is in
contrast to a regional empirical evaluation of cli-
mate–fire relationships where individual wild-
fires may not interact and fire size is not
inhibited by watershed boundaries. Ignition
sources were not assumed to be limiting, with an
average of two ignition locations tested every
month for fire start.

Given this simulation context, all climate sce-
narios predicted an initial pulse of area burned
within a decade of the start of the simulation,
consistently the highest area burned across all
scenarios except Base (Fig. 4). This period of high
AAB was associated with the highest level of fine
fuel loading (Fig. 5) that developed over a fire-
free spin-up, the lowest precipitation amounts in
the first decade, and above-average mean maxi-
mum temperature (Fig. 2). This pulse of area
burned was higher in the DroughtPlus4 scenario
compared with Base and even higher with the
Drought scenario. These patterns are consistent
with recent trends of increased area burned in
the Western United States that correlate with
temperature and precipitation (Holden et al.
2018) and provides an example of the role of
weather on fire intensity at short timescales
(same year) when fuels are readily available.

We will interpret these results in the energy-
regulation-scale framework proposed byMcKenzie

et al. (2011, see also Newman et al. 2019) that
considers transfers between potential and kinetic
energy, their distribution across scales, and how
those are regulated in the context of wildfire and
fire regimes (Fig. 6). In this framework, vegeta-
tion and fuel biomass represent potential energy
for a wildfire. There is a separation of timescales
associated with energy transfers in wildfire
regimes (Drossel and Schwabl 1992), where
energy is released in a conversion from potential
to kinetic energy over short time frames through
the process of combustion. Potential energy sub-
sequently builds over longer timescales through
vegetation succession and productivity. Climate
regulates both of these conversions at a similar
separation of timescales. Here, we consider each
of these timescales in turn.

Short timescales (same year) and the direct effect
of climate
Our modeling results corroborate the empiri-

cal evidence for the regulation by climate of the
short-term conversion of potential to kinetic
energy. Across the entire simulation period for a
given climate scenario, predicted annual area
burned was positively correlated with same-year
mean maximum temperature, negatively corre-
lated with same-year precipitation, and, depend-
ing on scenario, weakly positively correlated
with previous year precipitation (Fig. 3). The
magnitudes of these correlations varied among
the climate scenarios. These patterns in the corre-
lations predicted by the simulation system are
consistent with empirical studies of this area and
with the observation that the direct effect of
climate on wildfire depends on the long-term
climate context that drives fuel and vegetation
dynamics (Littell et al. 2009, 2018, Parisien and
Moritz 2009, Krawchuk and Moritz 2011,
McKenzie and Littell 2017). The direct effect of
temperature was less in the drought scenarios,
where the direct effect of climate was more dri-
ven by the same-year precipitation (Fig. 3) and
the onset of the simulated drought period.
Our results indicate that increased drought

and temperature will increase area burned rela-
tive to baseline for a location not burned previ-
ously. Both Drought and DroughtPlus4 showed
larger area burned in the first decade of the simu-
lation than Base (Fig. 4). Increasing frequency
and severity of drought will increase area burned
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and fire hazard. Over regional scales of large
area, this indicates elevated fire hazard associ-
ated with climate change relative to baseline.

These results also illuminate a limitation of
using empirical studies to project long-term cli-
mate effects on future wildfire regimes. The dis-
tributions of correlations between same-year
climate variables and annual area burned for the
Base and BasePlus4 climate scenarios were
almost indistinguishable (Fig. 3), both support-
ing the simple maxim hotter and drier = more
fire. If the correlations for the base scenario were
used to project future wildfire under a simple cli-
mate warming scenario with no change in pre-
cipitation, increased area burned would be
predicted. Yet, the coupled simulation system
predicted lower area burned over the entire sim-
ulation for the BasePlus4 scenario than Base.

While over the first decade the DroughtPlus4
scenario had a larger pulse of annual area
burned (Fig. 4), over the entire simulation period
it had a lower mean annual area burned than
Base (Table 1). Within a watershed, the longer
timescale regulation by climate of the conversion
of kinetic to potential energy via vegetation and
fuel development (Fig. 6) gives context to the
short-term regulation of fire activity by climate
and the effects can be confounding.

Long timescales (years to decades) and the
indirect effect of climate
At first glance, the lower predicted mean AAB

associated with increased temperature for a
given precipitation scenario (Table 1; Appendix
S1: Fig. S4) seems contradictory to the current
understanding of wildfire–climate relationships

Fig. 6. Landscape fire cycle adapted from McKenzie et al. (2011: Fig. 1.3). Climate regulates the conversion of
kinetic to potential energy through development of vegetation and fuels over longer timescales. Over these scales
in watersheds of the Sierra Nevada in California, increased temperature decreases productivity and increases
decomposition. Increased precipitation both increases productivity and potentially increases decomposition.
Increased productivity increases biomass and potential energy, whereas increased decomposition decreases bio-
mass and potential energy. Weather regulates the conversion of potential energy to kinetic energy for a given fuel
loading and structure, thereby regulating fire behavior and the severity of fire effects. Over shorter timescales,
increased temperature increases fire intensity and increased precipitation decreases it. Dimensions of climate and
weather can have counteracting effects on wildfire and fire regimes when considered both over long and short
timescales.
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in this region. What it demonstrates, however, is
the interaction of long-term indirect effects of cli-
mate through the accumulation of potential
energy with short-term direct effects on regulat-
ing the spread of wildfire. The study area has
been described to be in the middle of a gradient
between where same-year climate effects domi-
nate (forests) and where antecedent climate
effects on fine fuel development dominate
(deserts, grasslands, and shrublands; McKenzie
and Littell 2017). Net fuel loading is a balance of
increases through litterfall and mortality and
decreases through combustion and decomposi-
tion (Peterson et al. 2015). Previous work has
shown that forests in this region below around
2200 m in elevation tend to be water-limited and
have a negative relationship between net pri-
mary productivity and temperature (Tague et al.
2009, Trujillo et al. 2012). Decomposition rate of
fine fuels increases with temperature (Moore
1986, Gholz et al. 2000), and the temperature
effect on decomposition is independent of mois-
ture (Qi and Xu 2001). Absent wildfire, the model
predicted lower overstory productivity and fine
fuel loading with long-term increased mean tem-
perature (Fig. 5, Table 1). With warming, the
input to fine fuels decreases while the loss of fine
fuels to decomposition increases (Fig. 6). This
shifts the watershed further to one that is
resource constrained (Krawchuk and Moritz
2011), reducing the potential energy available for
the wildfire and weakening the direct effects of
climate on wildfire.

The proposition that long-term effects of cli-
mate on fuel loading may overwhelm short-term
correlations between climate and wildfire activity
is not new. In Spain, long-term past climate warm-
ing may already be associated with a moderation
in area burned, potentially due to the effect of
warming on fine fuel accumulation (Turco et al.
2014). Batllori et al. (2013) found that warmer–
drier scenarios tended to lower fire probability
across much of the Mediterranean-type biome,
which they attributed to exacerbated fuel limita-
tion. In a modeling study in a eucalypt forest,
Matthews et al. (2012) found a decrease in pre-
dicted fine fuel loading with climate warming that
reduced predicted rate of spread. When fuels
were not varied (a common feature of climate–fire
studies), predicted rate of spread increased with
climate warming. These feedbacks between

climate and fuel development and how those con-
found climate–fire relationships are not well
understood (Flannigan et al. 2009) and the repre-
sentation of such biological processes in models
varies and is often inadequate (Harris et al. 2016).
Predicted woody fuel accumulations can be sensi-
tive to decomposition rate (Kennedy et al. 2021),
representing a source of uncertainty that is partic-
ularly important if a simulation system is used to
predict future woody fuels and fire hazard.
Another important link between the direct role

of climate to regulate the conversion of potential
energy to kinetic energy over short timescales
and its role in regulating the long-term accumu-
lation of potential energy is the wildfire itself.
Wildfire can be self-limiting, with prior fires con-
straining the spread and severity of later fires
(Collins et al. 2009, Stevens-Rumann et al. 2016).
Historically, dry forests in this region experi-
enced frequent low-severity fire (Kilgore and
Taylor 1979), which maintained stand structures
resilient to subsequent wildfire (Scholl and Tay-
lor 2010). There is evidence that, compared with
historical patterns and despite recent increases,
area burned in many parts of the Western United
States is still in deficit (Parks et al. 2015). An era
of fire suppression modified these forest struc-
tures from ones in which fuel might be limiting
and discontinuous to ones of abundant fuel with
connectivity both horizontally and vertically
(Covington and Moore 1994, Hessburg et al.
2005), providing ample potential energy for
wildfire. Recent observations of fire–climate rela-
tionships are often in the context of unusually
abundant fuels where resources are no longer
constraining wildfire, and in this context direct
effects of climate tend to dominate (Krawchuk
and Moritz 2011). The initial pulses of wildfire
we observed in all simulations reflect this, where
they coincided with the first occurrence of
below-average precipitation (Fig. 2). Some have
indicated that fuels may ultimately be more
important than the direct impact of climate in
some areas (Lenihan et al. 2003, Honig and Fulé
2012, Parks et al. 2018) and that the relative
effects of climate and previous fire suppression
on fire regimes depend on whether the area was
historically fuel or flammability limited (Hanan
et al. 2021).
Within a watershed, the self-limiting property

of wildfire is more important than might be
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observed at larger scales, having implications for
local-scale wildfire and fuel management. There
was substantial variability in trajectories of fire
and vegetation across individual MC replicates
(Appendix S1: Figs. S3, S6–S8), yet this self-
limiting property is evident in the general trends
across replicate Fire simulations. In the Base sce-
nario after the first period of wildfire, the over-
story time series tended to stabilize to a near
steady-state behavior that, on average, paralleled
the NoFire simulations except with lower magni-
tude biomass (Fig. 5; Appendix S1: Fig. S10). The
understory time series tended to have a more
negative trajectory with Fire than in the NoFire
simulations, indicating that frequent wildfire
reduced ladder fuels in this system and pre-
vented wildfire from entering the overstory.
Once wildfire was introduced back into the sys-
tem, the watershed seemed to settle into a state
that may indicate resilience to subsequent wild-
fires (Peterson 2002, Scholl and Taylor 2010, Mor-
itz et al. 2011). In the Drought scenarios, the self-
limiting property of wildfire was evident by the
lower peak in area burned for each subsequent
drought (Fig. 4). In the Drought scenarios, the
overstory vegetation also paralleled that of the
NoFire scenarios with lower overall magnitude
evidenced by a lower intercept in the trend anal-
ysis (Appendix S1: Fig. S9).

The apparent stabilization of vegetation pat-
terns in the Drought scenarios does not mean,
however, that the future state of the vegetation
would necessarily meet management objectives
under climate change. Wildfire and drought
combined strongly reduced overstory biomass
(Fig. 5, Table 1), implying a change in the struc-
ture of the forest under their combined effects.
Reduction in overstory biomass could corre-
spond to a shift to more grasses and shrubs,
which might increase future fire, as predicted by
Lenihan et al. (2003). Vegetation management
that supports development of the overstory
canopy in times of water stress might help coun-
ter these effects.

The modeling context and limitations
The results presented in this paper are limited,

as are all model-based predictions of future con-
ditions, in that models do not project what the
future will be, but rather what the future might
be given the assumptions and structures

underlying the model structure and data inputs.
As with all modeling studies, the projections
should not be considered absent in this model
uncertainty context.
The long-term temperature effects of climate

change might be over-represented in these simu-
lations. Climate change is not expected to
increase mean temperature as high as 4°C imme-
diately in a step function, but rather show an
increasing trend in temperature that results in an
eventual mean as high as 4°C above current
(Cayan et al. 2007). The temperature effects may
not be uniform but rather vary seasonally. The
immediate effects on productivity and fuel accu-
mulation predicted by our simulations may not
manifest in such a dramatic fashion, but rather
impact fuels more gradually as mean tempera-
ture increases. Long-term past climate warming
in some regions, however, may already be associ-
ated with a moderation in area burned due to its
effect on fine fuel accumulation (Turco et al.
2014). We also see smaller but similar effects with
a uniform 2°C warming (Appendix S1).
Wildfire requires not only that the fuel and

weather conditions are suitable for burning, but
also an ignition source to start the fire. In these
simulations, the coincidence of fire activity
immediately with the initial period of reduced
precipitation may be an artifact of our assump-
tion that ignition sources are not limiting. In real-
ity, ignitions are highly stochastic and difficult to
predict. For a given watershed, there may be
multiple years of climate-suitable conditions
without an ignition source. These simulations
should be interpreted then as representing the
time when an ignition does coincide with climate
conditions suitable for wildfire.
Models are particularly useful when they

inspire new hypotheses and directions for empir-
ical research. These model predictions demon-
strate that the short- and long-term effects of
climate change on wildfire may differ, and we
require new empirical analyses that assess these
predictions in real-world settings. For example,
global analyses have found variable patterns of
increased and decreased area burned in different
regions (Riaño et al. 2007). An empirical analysis
could test whether long-term climate predicts
these differences in the changes in area burned
(Turco et al. 2014). Furthermore, these results
demonstrate that landscape memory (Peterson
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2002) is important to explain wildfire regimes at
intermediate scales. Statistically, this means that
wildfire is autocorrelated because it is a function
of both current and past conditions. Standard
empirical models treat observations as indepen-
dent of each other, but recent studies have
started to include the spatial autocorrelation
structure in explaining burn severity patterns in
individual wildfires (Wimberly et al. 2009, Pri-
chard and Kennedy 2014, Stevens-Rumann et al.
2016, Prichard et al. 2020) and have found that
the spatial autocorrelation itself explains much of
the variability in burn severity (Prichard et al.
2020). It would also be worthwhile to explore
temporal autocorrelation structures or some
other quantitative measure of landscape memory
in climate–wildfire relationships.

The climate scenarios in this study are not
meant to represent climate futures predicted by
emissions pathways and GCMs. Rather, they
decompose potential climate futures in a factorial
design intended to explore separate and com-
bined effects of climate warming with changes to
precipitation in the form of increased prolonged
drought. The simplicity of these climate scenarios
allowed us to track the long-term regulation by
climate of the conversion of kinetic to potential
energy and improve our understanding of feed-
backs in the climate/vegetation/fuels/wildfire
system. The fire regimes predicted here represent
those relationships. For forest management plan-
ning and applications, future work will incorpo-
rate climate projections from ensembles of GCMs
and emissions scenarios with simulations of fuels
management.

Management implications
These results support the conclusion that in

the near-term we can continue to expect
increased area burned, particularly in times of
reduced precipitation. If drought is more fre-
quent and severe with climate change, then these
periods of increased area burned may also
become more frequent over regional scales.
Returning some landscapes to a resource-
constrained condition through mechanical fuel
treatments and prescribed burning may amelio-
rate some of these effects and help to maintain
fire-resilient landscapes. Over the long-term,
planning should account for the effects of future
climate not only on fire weather but also on the

regulation of biomass and fuel accumulation that
provide potential energy for wildfire. The pattern
of reduced fuels we predicted for the study
watershed would not necessarily be expected
everywhere in this region. For example, at higher
elevations, increased temperature is predicted to
increase productivity (Tague et al. 2009) and the
effects on fuels will probably differ from those
found in this study. Hanan et al. (2021) propose
long-term average soil moisture as a simple met-
ric to discern whether an area is expected to be
fuel or flammability-limited. Good planning
requires understanding the separation of time-
scales that drive wildfire, both the short-term
and long-term impacts of climate on vegetation
and wildfire and the feedbacks among them. The
maxim that hotter and drier = more fire can be
both true and false depending on scale, and for
land management we need a better understand-
ing of where, how, and why.
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Honig, K. A., and P. Z. Fulé. 2012. Simulating effects of
climate change and ecological restoration on fire
behaviour in a south-western USA ponderosa pine
forest. International Journal of Wildland Fire
21:731–742.

Johnson, C., S. Chhin, and J. Zhang. 2017. Effects of cli-
mate on competitive dynamics in mixed conifer
forests of the Sierra Nevada. Forest Ecology and
Management 394:1–12.

Keane, R. E., G. J. Cary, I. D. Davies, M. D. Flannigan,
R. H. Gardner, S. Lavorel, J. M. Lenihan, C. Li, and
T. S. Rupp. 2004. A classification of landscape fire
succession models: spatial simulations of fire and
vegetation dynamics. Ecological Modelling 179:3–
27.

Kennedy, M. C. 2019. Experimental design principles
to choose the number of Monte Carlo replicates for
stochastic ecological models. Ecological Modelling
394:11–17.

Kennedy, M. C., M. C. Johnson, and S. Harrison. 2021.
Model predictions of post-wildfire woody fuel suc-
cession and fire behavior are sensitive to fuel
dynamics parameters. Forest Science 67:30–42.

Kennedy, M. C., and D. McKenzie. 2010. Using a
stochastic model and cross-scale analysis to

 v www.esajournals.org 17 July 2021 v Volume 12(7) v Article e03657

KENNEDY ETAL.



evaluate controls on historical low-severity fire
regimes. Landscape Ecology 25:1561–1573.

Kennedy, M. C., and D. McKenzie. 2017. Uncertainty
and complexity tradeoffs when integrating fire
spread with hydroecological projections. Pages
231–244 in K. Riley, P. Webley, and M. Thompson,
editors. Natural hazard uncertainty assessment:
Modeling and decision support. Geophysica. John
Wiley and Sons, West Sussex, UK.

Kennedy, M. C., D. Mckenzie, C. Tague, and A. L.
Dugger. 2017. Balancing uncertainty and complex-
ity to incorporate fire spread in an eco-
hydrological model. International Journal of Wild-
land Fire 26:706–718.

Kilgore, B. M., and D. Taylor. 1979. Fire history of a
sequoia-mixed conifer forest. Ecology 60:129–142.

Krawchuk, M. A., and M. A. Moritz. 2011. Constraints
on global fire activity vary across a resource gradi-
ent. Ecology 92:121–132.

Lenihan, J. M., R. Drapek, D. Bachelet, and R. P. Neil-
son. 2003. Climate change effects on vegetation dis-
tribution, carbon, and fire in California. Ecological
Applications 13:1667–1681.

Littell, J. S., D. McKenzie, D. L. Peterson, and A. L.
Westerling. 2009. Climate and wildfire area burned
in western U.S. ecoprovinces, 1916–2003. Ecologi-
cal Applications 19:1003–1021.

Littell, J. S., D. McKenzie, H. Y. Wan, and S. A. Cush-
man. 2018. Climate change and future wildfire in
the Western United States: an ecological approach
to nonstationarity. Earth’s Future 6:1097–1111.

Matthews, S., A. L. Sullivan, P. Watson, and R. J. Wil-
liams. 2012. Climate change, fuel and fire beha-
viour in a eucalypt forest. Global Change Biology
18:3212–3223.

McIntyre, P. J., J. H. Thorne, C. R. Dolanc, A. L. Flint,
L. E. Flint, M. Kelly, and D. D. Ackerly. 2015.
Twentieth-century shifts in forest structure in Cali-
fornia: denser forests, smaller trees, and increased
dominance of oaks. Proceedings of the National
Academy of Sciences of the United States of Amer-
ica 112:1458–1463.

McKenzie, D., and M. Kennedy. 2012. Power laws
reveal phase transitions in landscape controls of
fire regimes. Nature Communications 3:726. https://
doi.org/10.1038/ncomms1731

McKenzie, D., and J. S. Littell. 2017. Climate change
and the eco-hydrology of fire: Will area burned
increase in a warming western USA. Ecological
Applications 27:26–36.

McKenzie, D., C. Miller, and D. Falk. 2011. Toward a
theory of landscape fire. Pages 3–25 in D. McKen-
zie, C. Miller, and D. Falk, editors. The landscape
ecology of fire. Ecological studies volume 213,

Analysis and synthesis. Springer, New York, New
York, USA.

Moore, A. M. 1986. Temperature and moisture depen-
dence of decomposition rates of hardwood and
coniferous leaf litter. Soil Biology and Biochemistry
18:427–435.

Moritz, M. A., P. F. Hessburg, and N. A. Povak. 2011.
Chapter 3 Native fire regimes and landscape resili-
ence. Pages 51–86 in D. McKenzie, C. Miller, and
D. A. Falk, editors. The Landscape Ecology of Fire.
Springer, New York, New York, USA.

Newman, E. A., M. C. Kennedy, D. A. Falk, and D.
Mckenzie. 2019. Scaling and complexity in land-
scape ecology. Frontiers in Ecology and Evolution
7:1–16.

Parisien, M.-A., and M. A. Moritz. 2009. Environmen-
tal controls on the distribution of wildfire at multi-
ple spatial scales. Ecological Monographs 79:127–
154.

Parks, S., S. Dobrowski, and M. Panunto. 2018. What
drives low-severity fire in the southwestern USA?
Forests 9:165.

Parks, S. A., C. Miller, M. A. Parisien, L. M. Holsinger,
S. Z. Dobrowski, and J. Abatzoglou. 2015. Wild-
land fire deficit and surplus in the western United
States, 1984–2012. Ecosphere 6:1–13.

Parsons, D. J., D. M. Graber, J. K. Agee, and J. W. Van
Wagtendonk. 1986. Natural fire management in
National Parks. Environmental Management
10:21–24.

Peterson, G. D. 2002. Contagious disturbance, ecologi-
cal memory, and the emergence of landscape pat-
tern. Ecosystems 5:329–338.

Peterson, D. W., E. K. Dodson, and R. J. Harrod. 2015.
Post-fire logging reduces surface woody fuels up to
four decades following wildfire. Forest Ecology
and Management 338:84–91.

Prichard, S. J., and M. C. Kennedy. 2014. Fuel treat-
ments and landform modify landscape patterns of
burn severity in an extreme fire event. Ecological
Applications 24:571–590.

Prichard, S. J., M. C. Kennedy, C. S. Wright, J. B. Cro-
nan, and R. D. Ottmar. 2017. Predicting forest floor
and woody fuel consumption from prescribed
burns in southern and western pine ecosystems of
the United States. Forest Ecology and Management
405:328–338.

Prichard, S. J., N. A. Povak, M. C. Kennedy, and D.
W. Peterson. 2020. Fuel treatment effectiveness in
the context of landform, vegetation, and large,
wind-driven wildfires. Ecological Applications
30:1–22.

Qi, Y., and M. Xu. 2001. Separating the effects of mois-
ture and temperature on soil CO2 efflux in a

 v www.esajournals.org 18 July 2021 v Volume 12(7) v Article e03657

KENNEDY ETAL.

https://doi.org/10.1038/ncomms1731
https://doi.org/10.1038/ncomms1731


coniferous forest in the Sierra Nevada mountains.
Plant and Soil 237:15–23.

Riaño, D., J. A. Moreno Ruiz, D. Isidoro, and S. L.
Ustin. 2007. Global spatial patterns and temporal
trends of burned area between 1981 and 2000 using
NOAA-NASA Pathfinder. Global Change Biology
13:40–50.

Scholl, A. E., and A. H. Taylor. 2010. Fire regimes, for-
est change, and self-organization in an old-growth
mixed-conifer forest, Yosemite National Park, USA.
Ecological Applications 20:362–380.

Son, K., and C. Tague. 2019. A top–down soil moisture
and sap flux sampling design of a rain–snow tran-
sition mountain watershed. Hydrological Processes
33:1553–1568.

Stephenson, N. 1998. Actual evapotranspiration and
deficit: biologically meaningful correlates of vege-
tation distribution across spatial scales. Journal of
Biogeography 25:855–870.

Stevens-Rumann, C. S., S. J. Prichard, E. K. Strand, and
P. Morgan. 2016. Prior wildfires influence burn
severity of subsequent large fires. Canadian Jour-
nal of Forest Research 46:1375–1385.

Swann, A. L., I. Y. Fung, and J. C. Chiang. 2012. Mid-
latitude afforestation shifts general circulation and
tropical precipitation. Proceedings of the National
Academy of Sciences USA 109:712–716.

Swain, D. L., B. Langenbrunner, J. D. Neelin, and A.
Hall. 2018. Increasing precipitation volatility in
twenty-first-century California. Nature Climate
Change 8:427–433.

Tague, C., and L. Band. 2004. RHESSys: regional
hydro-ecologic simulation system—An object-
oriented approach to spatially distributed model-
ing of carbon, water, and nutrient cycling. Earth
Interactions 8:1–42.

Tague, C. L., J. S. Choate, and G. Grant. 2013. Parame-
terizing sub-surface drainage with geology to
improve modeling streamflow responses to climate
in data limited environments. Hydrology and
Earth System Sciences 17:341–354.

Tague, C., K. Heyn, and L. Christensen. 2009. Topo-
graphic controls on spatial patterns of conifer tran-
spiration and net primary productivity under
climate warming in mountain ecosystems. Ecohy-
drology 2:541–554.

Trujillo, E., N. P. Molotch, M. L. Goulden, A. E. Kelly,
and R. C. Bales. 2012. Elevation-dependent influ-
ence of snow accumulation on forest greening.
Nature Geoscience 5:705–709.

Tsamir, M., S. Gottlieb, Y. Preisler, E. Rotenberg, F.
Tatarinov, D. Yakir, C. Tague, and T. Klein. 2019.
Stand density effects on carbon and water fluxes in
a semi-arid forest, from leaf to stand-scale. Forest
Ecology and Management 453:117573.

Turco, M., J. Bedia, F. Di Liberto, P. Fiorucci, J. Von
Hardenberg, N. Koutsias, M. C. Llasat, F. Xys-
trakis, and A. Provenzale. 2016. Decreasing fires in
Mediterranean Europe. PLOS ONE 11:e0150663.

Turco, M., M. C. Llasat, J. von Hardenberg, and A.
Provenzale. 2014. Climate change impacts on wild-
fires in a Mediterranean environment. Climatic
Change 125:369–380.

Vicente-Serrano, S. M., J. J. Camarero, J. Zabalza, G.
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